The Electrophysiological Mechanism of Ventricular Arrhythmias in the Long QT Syndrome

Author:

El-Sherif Nabil1,Caref Edward B.1,Yin Hong1,Restivo Mark1

Affiliation:

1. the Cardiology Division, Department of Medicine, State University of New York Health Science Center and Veterans Affairs Medical Center, Brooklyn.

Abstract

We have previously developed a canine in vivo model of the long QT syndrome (LQTS) using the neurotoxin anthopleurin A (AP-A), which acts by slowing sodium channel inactivation. The recent discovery of a genetic mutation in the cardiac sodium channel in some patients with the congenital LQTS, resulting in abnormal gating behavior similar to sodium channels exposed to AP-A, provides a strong endorsement of this animal model as a valid surrogate to the clinical syndrome of LQTS. In the present study, we conducted high-resolution tridimensional isochronal mapping of both activation and repolarization patterns in puppies exposed to AP-A that developed LQTS and polymorphic ventricular tachyarrhythmias (VTs). To map repolarization, we measured activation-recovery intervals (ARIs) using multiple unipolar extracellular electrograms. We demonstrated, for the first time in vivo, the existence of spatial dispersion of repolarization in the ventricular wall and differences in regional recovery in response to cycle-length changes that were markedly exaggerated after AP-A administration. Analysis of tridimensional activation patterns showed that the initial beat of polymorphic VT consistently arose as focal activity from a subendocardial site, whereas subsequent beats were due to successive subendocardial focal activity, reentrant excitation, or a combination of both mechanisms. Reentrant excitation was due to infringement of a focal activity on the spatial dispersion of repolarization, resulting in functional conduction block and circulating wave fronts. The polymorphic QRS configuration of VT in the LQTS was due to either changing the site of origin of focal activity, resulting in varying activation patterns, or varying orientations of circulating wave fronts.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 380 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3