Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats.

Author:

Kajstura J1,Zhang X1,Reiss K1,Szoke E1,Li P1,Lagrasta C1,Cheng W1,Darzynkiewicz Z1,Olivetti G1,Anversa P1

Affiliation:

1. Department of Medicine, New York Medical College, Valhalla 10595.

Abstract

To determine whether cardiac failure produced by chronic coronary artery stenosis was associated with the activation of myocyte cellular hyperplasia in the myocardium, the changes in number and size of left ventricular myocytes were measured in rats 3 months after surgery. The hypertrophied left ventricle was found to possess 44%, 32%, 49%, and 48% fewer mononucleated, binucleated, trinucleated, and tetranucleated myocytes, respectively. In contrast, the hypertrophied right ventricle contained 1.49 x 10(6) more myocytes as a result of a 2.1-fold, 1.4-fold, and 1.4-fold increase in mononucleated, binucleated, and tetranucleated myocytes. Myocyte cell volume was seen to increase 49% and 21% in left and right ventricular myocytes, respectively. The process of myocyte cellular hyperplasia in the right ventricular myocardium was accompanied by capillary proliferation, and these events were responsible for the parallel addition of newly formed cells and capillaries within the wall and mural thickening. Moreover, the in-series insertion of new myocytes contributed to right ventricular dilatation after coronary artery stenosis. In view of the fact that extensive myocardial damage and cell loss may have masked the phenomenon of myocyte cellular hyperplasia in the left ventricle, the presence of DNA synthesis in myocyte nuclei was evaluated at 3 days, 1 week, 2 weeks, 1 month, and 3 months after coronary artery stenosis. Bromodeoxyuridine (BrdU) labeling markedly increased in myocyte nuclei of both ventricles, reaching its peak at 1 and 2 weeks. BrdU labeling of nonmyocyte nuclei also increased but mostly at 2 weeks.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3