Lactate transport in mammalian ventricle. General properties and relation to K+ fluxes.

Author:

Shieh R C1,Goldhaber J I1,Stuart J S1,Weiss J N1

Affiliation:

1. Department of Medicine (Cardiology), UCLA School of Medicine 90024.

Abstract

Net cellular L-lactate efflux associated with accelerated anaerobic glycolysis has been implicated as a potential cause of the marked cellular K+ loss contributing to lethal cardiac arrhythmias in ischemic heart and to impaired function of fatigued skeletal muscle. To examine the mechanisms of transsarcolemmal L-lactate movement in the heart, isolated guinea pig ventricular myocytes were loaded with the fluorescent H+ or K+ indicators, carboxy SNARF-1 or PBFI, respectively, under whole-cell patch-clamp conditions. With H+ as the only permeable monovalent cation, a rapid increase in extracellular L-lactate concentration ([L-]o) from 0 to 30 mmol/L at constant pHo (7.35) caused an intracellular acidification averaging 0.18 +/- 0.02 pH units in 60 seconds (n = 7), reflecting L-lactate influx in association with H+ influx (or OH- efflux). Under voltage-clamp conditions, no significant electrogenic current was associated with H(+)-coupled L-lactate influx, and membrane potential (-75 to +75 mV) had no effect on the degree of acidification produced by 30 mmol/L [L-]o, indicating that L-lactate influx was predominantly nonelectrogenic. Acidification in response to increased [L-]o was saturable (Km, approximately 5 mmol/L), partially stereospecific for L-lactate over D-lactate, and inhibited by 55 +/- 7% and 82 +/- 7% by the monocarboxylate carrier inhibitors alpha-cyano-4-hydroxycinnamate and mersalyl acid, respectively, consistent with a carrier-mediated transport mechanism. Extracellular K+ inhibited H(+)-coupled L-lactate influx by 36 +/- 2%, suggesting that K+ either inhibited or substituted for H+ in cotransport with L-lactate. However, in myocytes loaded with PBFI, no significant increase in [K+]i was detected during exposure to 30 mmol/L [L-]o, suggesting that only a minor component, if any, of L-lactate influx was cotransported or codiffused with K+.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3