T-type Ca2+ channels are abnormal in genetically determined cardiomyopathic hamster hearts.

Author:

Sen L1,Smith T W1

Affiliation:

1. Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.

Abstract

Although there is substantial evidence of abnormal Ca2+ homeostasis in heart cells of the cardiomyopathic Syrian hamster (Bio 14.6 strain), the mechanism by which these myocytes become Ca(2+)-overloaded is not known. To elucidate the role of voltage-sensitive Ca2+ channels in the pathogenesis of myopathy, whole-cell Ca2+ currents were measured in myopathic and normal control cardiac myocytes. These studies demonstrate the presence of two voltage-sensitive Ca2+ channel types in ventricular myocytes isolated from 200- to 300-day-old cardiomyopathic and age-matched normal hamsters. The two Ca2+ channel types were identified by their unitary conductance properties and pharmacologic sensitivities. Both L-type and T-type Ca2+ channels were present in cardiomyopathic and normal cells. Current density through L-type Ca2+ channels was the same in cardiomyopathic and normal control myocytes. However, the mean current density of T-type Ca2+ channels in cardiomyopathic cells was significantly higher than in normal cells (myopathic, 12.3 +/- 1.8 pA/pF; normal, 5.8 +/- 1.1 pA/pF; n = 8; P < .01). The T-type Ca2+ current in cardiomyopathic myocytes was activated and inactivated at more negative potentials than in cells from normal hamster hearts. These findings demonstrate no abnormality of the dihydropyridine-sensitive voltage-dependent L-type Ca2+ channel. In contrast, the observed abnormalities in T-type Ca2+ channel function in cardiomyopathic hamster myocytes suggest that this alteration may be related to the pathogenesis of Ca2+ overload and the arrhythmias in this genetically determined form of cardiomyopathy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3