Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart.

Author:

Ungerer M1,Parruti G1,Böhm M1,Puzicha M1,DeBlasi A1,Erdmann E1,Lohse M J1

Affiliation:

1. Laboratorium für Molekulare Biologie, Universität München, Max-Planck-Institut für Biochemie, Martinsried, Germany.

Abstract

The beta-adrenergic receptor system of the failing human heart is markedly desensitized. We have recently postulated that this desensitization may in part be caused by an increase in beta-adrenergic receptor kinase (beta ARK) expression. beta ARK is thought to effect desensitization by acting in concert with an inhibitor protein, called beta-arrestin. Two isoforms have been identified both for beta ARK and for beta-arrestin. In the present study, we have investigated the expression of the individual isoforms of beta-arrestin and of beta ARK in left ventricles from failing and control human hearts. mRNAs for all four proteins, beta-arrestin-1, beta-arrestin-2, beta ARK-1, and beta ARK-2, were identified in human heart. Quantitation by reverse-transcription polymerase chain reactions showed that in heart failure there were no changes of the mRNA levels for beta-arrestin-1 and beta-arrestin-2, a slight (< 50%) increase of the mRNA for beta ARK-2, and a threefold increase for beta ARK-1 mRNA. At the protein level, beta-arrestin-1 was readily detected by Western blotting in human heart. Its absolute values were approximately 350 fmol/mg cytosolic protein, and its expression was not changed in heart failure. beta-Arrestin-2 levels were too low to be detectable using the same methods. beta ARK levels as determined by enzymatic activity were approximately 20 fmol/mg cytosolic protein (beta ARK-1 plus beta ARK-2) and thus almost 20-fold lower than those of beta-arrestin. beta ARK levels were increased approximately twofold in heart failure.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 270 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3