Population-Based Variation in Cardiomyopathy Genes

Author:

Golbus Jessica R.1,Puckelwartz Megan J.1,Fahrenbach John P.1,Dellefave-Castillo Lisa M.1,Wolfgeher Don1,McNally Elizabeth M.1

Affiliation:

1. From the Department of Medicine and Department of Human Genetics, The University of Chicago, Chicago, IL.

Abstract

Background— Hypertrophic cardiomyopathy and dilated cardiomyopathy arise from mutations in genes encoding sarcomere proteins including MYH7 , MYBPC3 , and TTN . Genetic diagnosis of cardiomyopathy relies on complete sequencing of the gene coding regions, and most pathogenic variation is rare. The 1000 Genomes Project is an ongoing consortium designed to deliver whole genome sequence information from an ethnically diverse population and, therefore, is a rich source to determine both common and rare genetic variants. Methods and Results— We queried the 1000 Genomes Project database of 1092 individuals for exonic variants within 3 sarcomere genes MHY7 , MYBPC3 , and TTN . We focused our analysis on protein-altering variation, including nonsynonymous single nucleotide polymorphisms, insertion/deletion polymorphisms, or splice site altering variants. We identified known and predicted pathogenic variation in MYBPC3 and MYH7 at a higher frequency than what would be expected based on the known prevalence of cardiomyopathy. We also found substantial variation, including protein-disrupting sequences, in TTN . Conclusions— Cardiomyopathy is a genetically heterogeneous disorder caused by mutations in multiple genes. The frequency of predicted pathogenic protein-altering variation in cardiomyopathy genes suggests that many of these variants may be insufficient to cause disease on their own but may modify phenotype in a genetically susceptible host. This is suggested by the high prevalence of TTN insertion/deletions in the 1000 Genomes Project cohort. Given the possibility of additional genetic variants that modify the phenotype of a primary driver mutation, broad-based genetic testing should be employed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics(clinical),Cardiology and Cardiovascular Medicine,Genetics

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3