Hsa_circ_0016070/micro‐340‐5p Axis Accelerates Pulmonary Arterial Hypertension Progression by Upregulating TWIST1 Transcription Via TCF4/β‐Catenin Complex

Author:

Huang Chun‐Xia1,Jiang Zhi‐Xin2,Du Da‐Yong2,Zhang Zhi‐Min3,Liu Yang2,Li Yun‐Tian12ORCID

Affiliation:

1. The Second School of Clinical Medicine Southern Medical University Guangzhou Guangdong Province China

2. Department of Cardiology 305 Hospital of PLA Beijing China

3. Shanxi Medical University Linfen Peoples’ Hospital Linfen Shanxi Province China

Abstract

Background Hypoxia is considered a major leading cause of pulmonary hypertension (PH). In this study, the roles and molecular mechanism of circ_0016070 in PH were studied. Methods and Results The expression of circ_0016070 in serum samples, human pulmonary artery smooth muscle cells and hypoxia/monocrotaline‐treated rats was determined by real‐time quantitative polymerase chain reaction. Cell viability, migration, and apoptosis were analyzed by Cell Counting Kit‐8, wound healing, flow cytometry, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays, respectively. The molecular interactions were validated using RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase reporter assays. The levels of phenotype switch‐related proteins were evaluated by Western blot and immunohistochemistry. The pathological characteristics were assessed using hematoxylin and eosin staining. circ_0016070 was highly expressed in the serum samples, hypoxia‐induced pulmonary artery smooth muscle cells and pulmonary arterial tissues of PH rats. Downregulation of circ_0016070 ameliorated the excessive proliferation, migration, vascular remodeling, and phenotypic transformation but enhanced cell apoptosis in the PH rat model. In addition, micro (miR)‐340‐5p was verified as a direct target of circ_0016070 and negatively regulated TCF4 (transcription factor 4) expression. TCF4 formed a transcriptional complex with β‐catenin to activate TWIST1 (Twist family bHLH transcription factor 1) expression. Functional rescue experiments showed that neither miR‐340‐5p inhibition nor TWIST1 or TCF4 upregulation significantly impeded the biological roles of circ_0010670 silencing in PH. Conclusions These results uncovered a novel mechanism by which circ_0016070 play as a competing endogenouse RNA of miR‐340‐5p to aggravate PH progression by promoting TCF4/β‐catenin/TWIST1 complex, which may provide potential therapeutic targets for PH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3