Phosphatidylinositol 3-Kinase and Focal Adhesion Kinase Are Early Signals in the Growth Factor–Like Responses to Thrombospondin-1 Seen in Human Vascular Smooth Muscle

Author:

Lymn Joanne S.1,Rao Sarafina J.1,Clunn Gerard F.1,Gallagher Karen L.1,O’Neil Clive1,Thompson Neil T.1,Hughes Alun D.1

Affiliation:

1. From Clinical Pharmacology, National Heart and Lung Institute, Imperial College of Science, Technology & Medicine, St. Mary’s Hospital, London (J.S.L., S.J.R., G.F.C., K.L.G., A.D.H.), and the Immunology Unit, Glaxo-Wellcome, Medicines Research Centre, Stevenage (C.N., N.T.T.), England.

Abstract

Abstract —Thrombospondin-1 (TSP-1) is a matricellular protein that is expressed in negligible amounts in normal blood vessels but is markedly upregulated in vascular injury. Although TSP-1 can act as a pleiotropic regulator for human vascular smooth muscle cells (HVSMCs), the intracellular signaling pathways stimulated by this protein remain obscure. In cultured HVSMCs derived from saphenous vein, TSP-1 induces tyrosine phosphorylation of a number of cellular proteins, with a complex temporal pattern of activation. Immunoprecipitation techniques have identified the early tyrosine-phosphorylated signals as being the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-K) and focal adhesion kinase (FAK). Tyrosine phosphorylation of the p85 subunit of PI 3-K showed a biphasic response to TSP-1 stimulation, which corresponded to a biphasic activation of the lipid kinase. Treatment with both wortmannin and LY294002 inhibited PI 3-K activity of HVSMCs but did not affect tyrosine phosphorylation of the p85 regulatory subunit. TSP-1–stimulated FAK phosphorylation, however, was substantially reduced by these inhibitors, as was the TSP-1–induced chemotaxis of these cells. These results suggest that activation of PI 3-K is an early signal induced by TSP-1 and is critical for chemotaxis. Activation of this kinase precedes and may occur upstream from FAK phosphorylation, although the nature of the interaction between these 2 enzymes remains obscure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3