Local Hypomethylation in Atherosclerosis Found in Rabbit ec-sod Gene

Author:

Laukkanen Mikko O.1,Mannermaa Sanna1,Hiltunen Mikko O.1,Aittomäki Saara1,Airenne Kari1,Jänne Juhani1,Ylä-Herttuala Seppo1

Affiliation:

1. From the A. I. Virtanen Institute (M.O.L., S.M., M.O.H., K.A., J.J., S.Y.-H.) and the Department of Medicine (S.Y.-H.), University of Kuopio, Kuopio, and the Institute of Medical Technology (S.A.), University of Tampere, Tampere, Finland.

Abstract

Abstract —Extracellular superoxide dismutase (EC-SOD) protects arteries against deleterious effects of superoxide anions and the development of atherosclerosis. In this study, we cloned and characterized rabbit ec-sod gene. We identified 6 rabbit C-elements and 5 CpG clusters in the cloned sequence. One of the CpG clusters is located on the coding sequence. Because CpG clusters are potential sites for methylation and may explain the occurrence of mutations, methylation status of each of the CpG dimers located in the coding sequence CpG cluster was characterized using direct genomic sequencing. Unexpectedly, a marked reduction in the amount of methylated CpG dinucleotides in ec-sod gene was detected in atherosclerotic aortas as compared with normal aortic intima-media. Although alterations in DNA methylation are well characterized in malignant tumors, the presence of methylation changes in atherosclerosis has not been studied even though both diseases are characterized by excess cellular proliferation and alterations in gene expression. Further analysis of the whole genomic methylation by high-pressure liquid chromatography in normal and atherosclerotic aortas revealed a tendency for a decreased 5-methylcytosine (5-mC) content in atherosclerotic aortas as compared with normal arteries. Hypomethylation in atherosclerotic aortas occurred at the same level as has been reported from malignant tumors. Although a causal relationship between the methylation level and expression of EC-SOD cannot be proven, our results show that ec-sod hypomethylation is associated with the development of atherosclerosis and suggest that it may affect structure and function of ec-sod and other genes possibly involved in the development of atherosclerotic lesions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3