Mast Cell Granule Remnants Carry LDL Into Smooth Muscle Cells of the Synthetic Phenotype and Induce Their Conversion Into Foam Cells

Author:

Wang Yenfeng1,Lindstedt Ken A.1,Kovanen Petri T.1

Affiliation:

1. From the Wihuri Research Institute, Helsinki, Finland.

Abstract

Abstract We report the effect of mast cells on the uptake of LDL by smooth muscle cells (SMCs) and their conversion into foam cells in vitro. The mast cells were stimulated to exocytose their cytoplasmic secretory granules, and the granule remnants formed were recovered from the extracellular fluid and added to cultures of SMCs of either the synthetic or contractile phenotype in LDL-containing medium. In the presence but not in the absence of granule remnants, SMCs of the synthetic phenotype took up LDL with ensuing stimulation of intracellular cholesteryl ester synthesis and cytoplasmic accumulation of neutral lipid droplets. Using methylated LDL (mLDL), a modified species of LDL that binds to granule remnants but not to LDL receptors, we demonstrated that this uptake (leading to foam cell formation) occurred only when LDL was bound to granule remnants. After the addition of colloidal gold–LDL and granule remnants to the incubation system, electron microscopy revealed that within phagosomes of the SMCs there were granule remnants (diameter, 0.5 to 1 μm) coated with LDL, confirming that LDL had been carried into the cells with the remnants. SMCs of the contractile phenotype were less efficient than their synthetic counterparts at phagocytosing LDL-coated granule remnants and were not converted into foam cells. This difference in the rate of phagocytosis of granule remnants was present even in the absence of LDL, revealing that the more active phagocytosis by SMCs of the synthetic phenotype was not specifically related to uptake of lipids but rather reflected a general phenotype characteristic of these cells. These observations indicate a phagocytic mechanism by which SMCs of the synthetic phenotype are converted into cholesteryl ester–filled foam cells, and they also suggest that degranulation of mast cells plays a role in the development of fatty streak lesions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3