A Systematic Analysis of 40 Random Genes in Cultured Vascular Smooth Muscle Subtypes Reveals a Heterogeneity of Gene Expression and Identifies the Tight Junction Gene Zonula Occludens 2 as a Marker of Epithelioid “Pup” Smooth Muscle Cells and a Participant in Carotid Neointimal Formation

Author:

Adams Lawrence D.1,Lemire Joan M.1,Schwartz Stephen M.1

Affiliation:

1. From the Department of Pathology, University of Washington, Seattle, Wash.

Abstract

Abstract —An accumulation of evidence suggests that vascular smooth muscle is composed of cell subpopulations with distinct patterns of gene expression. Much of this evidence has come from serendipitous discoveries of genes marking phenotypically distinct aortic cultures derived from 12-day-old and 3-month-old rats. To identify more systematic differences, we isolated 40 genes at random from libraries of these 2 cultures and examined message expression patterns. To determine consistency of differential expression, we measured mRNA levels in 4 sets of cultures in 6 phenotypically distinct aortic cell clones and in balloon injured rat carotid arteries to determine the relevance of these differences in vitro to in vivo biology. The following 5 consistently differentially expressed genes were identified in vitro: zonula occludens 2 (ZO-2); peroxisome proliferator-activated receptor δ (PPARδ); secreted protein, acidic and rich in cysteine (SPARC); α1(I)collagen; and A2, an uncharacterized gene. We examined these 5 clones during carotid artery injury and an inconsistently differentially expressed clone Krox-24 because, as an early response transcription factor, it could be involved in the injury response. PPARδ, A2, and Krox-24 mRNAs were upregulated during the day after injury. ZO-2 and α1(I)collagen messages were modulated for up to a month, whereas SPARC message showed no consistent change. An analysis of ZO-2 and other tight junction genes indicates that tight junctions may play a role in smooth muscle biology. These data suggest that a systematic analysis of these libraries is likely to identify a very large number of differentially expressed genes. ZO-2 is particularly intriguing both because of this tight junction gene’s pattern of prolonged over-expression after injury and because of its potential role in determining the distinctive epithelioid phenotype of smooth muscle cells identified in rat and other species.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3