Affiliation:
1. the Department of Medicine and William K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City, and the Blood Research Institute of the Blood Center of Southeastern Wisconsin (P.J.S.), Milwaukee.
Abstract
Deposition of the terminal complement proteins (C5b-9) on human endothelial cells can result in cell lysis or nonlytic alterations of cell function including procoagulant responses. Because regulation of fibrinolysis is a central endothelial function and because C9 contains a carboxyl-terminal lysine similar to other proteins that bind and facilitate activation of plasminogen (PG), the effects of complement injury on PG binding and activation on these cells were investigated. Activation of complement through deposition of C5b67 complexes on endothelial cells resulted in a small increase (≈20%) in PG binding. Incorporation of C8 into C5b-8 resulted in no further increase in binding; however, specific
125
I-PG binding was increased by ≈100% after C5b-9 deposition. Moreover, PG was found to bind specifically to C7 and C9. The PG bound to endothelial cells after C5b-9 deposition was readily activated by tissue-type plasminogen activator (TPA). In a cell-free system, complement C9 and a synthetic peptide composed of the 20 carboxyl-terminal amino acids of C9 enhanced PG activation by TPA. Removal of the carboxyl-terminal lysine of C9 abolished the enhancement of PG activation without diminishing PG binding. We conclude that membrane C9 may comprise a binding site for PG and serve to enhance activation of this zymogen by TPA. These findings suggest that immune injury to the endothelium may enhance both the fibrin-generating and fibrinolytic capacity of the vessel wall.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献