Shift to an Involvement of Phosphatidylinositol 3-Kinase in Angiotensin II Actions on Nucleus Tractus Solitarii Neurons of the Spontaneously Hypertensive Rat

Author:

Sun Chengwen1,Zubcevic Jasenka1,Polson Jaimie W.1,Potts Jeffrey T.1,Diez-Freire Carlos1,Zhang Qi1,Paton Julian F.R.1,Raizada Mohan K.1

Affiliation:

1. From the Department of Pharmaceutical Sciences (C.S., Q.Z.), North Dakota State University, Fargo; Department of Integrative Physiology (J.Z., J.T.P.), University of North Texas Health Science Center, Fort Worth; Discipline of Biomedical Science (J.W.P.), Sydney Medical School, University of Sydney, Australia; Department of Physiology and Functional Genomics and McKnight Brain Institute (C.D.-F., M.K.R.), University of Florida, Gainesville; and Department of Physiology and Pharmacology (J.F.R.P.),...

Abstract

Rationale: Central angiotensin (Ang) II inhibits baroreflex and plays an important role in the pathogenesis of hypertension. However, the underlying molecular mechanisms are still not fully understood. Objective: Our objective in the present study was to characterize the signal transduction mechanism of phosphatidylinositol 3-kinase (PI3K) involvement in Ang II–induced stimulation of central neuronal activity in cultured neurons and Ang II–induced inhibition of baroreflex in spontaneously hypertensive rats (SHR) versus WKY rats. Methods and Results: Application of Ang II to neurons produced a 42% greater increase in neuronal firing in cells from the SHR than the WKY rat. Although the Ang II–mediated increase in firing rate was abolished entirely by the protein kinase (PK)C inhibitor GF109230 in the WKY, blockade of both PKC and PI3K activity was necessary in the SHR. This was associated with an increased ability of Ang II to stimulate NADPH oxidase–reactive oxygen species (ROS)–mediated signaling involving phosphorylation of the p47phox subunit of the NADPH oxidase and was dependent on the activation of PI3K in the SHR. Inhibition of PI3K resulted in the reduction of levels of p47phox phosphorylation, NADPH oxidase activity, ROS levels, and ultimately neuronal activity in cells from the SHR but not the WKY rat. In addition, in working heart–brainstem preparations, inhibition of PKC activity in the nucleus of the solitary tract in situ abolished the Ang II–mediated depression of cardiac and sympathetic baroreceptor reflex gain in the WKY. In contrast, PKC inhibition in the nucleus of the solitary tract of SHR only partially reduced the effect of Ang II on the baroreceptor reflex gain. Conclusions: These observations demonstrate that PI3K in the cardiovascular brainstem regions of the SHR may be selectively involved in Ang II–mediated signaling that includes a reduction in baroreceptor reflex function, presumably via a NADPH-ROS mediated pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3