Hypoxia-Inducible Factor-1α in Pulmonary Artery Smooth Muscle Cells Lowers Vascular Tone by Decreasing Myosin Light Chain Phosphorylation

Author:

Kim Yu-Mee1,Barnes Elizabeth A.1,Alvira Cristina M.1,Ying Lihua1,Reddy Sushma1,Cornfield David N.1

Affiliation:

1. From the Department of Pediatrics, Stanford University Medical School, Stanford, CA.

Abstract

Rationale: Hypoxia-inducible factor-1α (HIF-1α), an oxygen (O 2 )-sensitive transcription factor, mediates transcriptional responses to low-O 2 tension states. Although acute hypoxia causes pulmonary vasoconstriction and chronic hypoxia can cause vascular remodeling and pulmonary hypertension, conflicting data exist on the role of HIF-1α in modulating pulmonary vascular tone. Objective: To investigate the role of smooth muscle cell (SMC)–specific HIF-1α in regulating pulmonary vascular tone. Methods and Results: Mice with an SMC-specific deletion of HIF-1α (SM22α-HIF-1α −/− ) were created to test the hypothesis that pulmonary artery SMC (PASMC) HIF-1α modulates pulmonary vascular tone and the response to hypoxia. SM22α-HIF-1α −/− mice exhibited significantly higher right ventricular systolic pressure compared with wild-type littermates under normoxia and with exposure to either acute or chronic hypoxia in the absence of histological evidence of accentuated vascular remodeling. Moreover, myosin light chain phosphorylation, a determinant of SMC tone, was higher in PASMCs isolated from SM22α-HIF-1α −/− mice compared with wild-type PASMCs, during both normoxia and after acute hypoxia. Further, overexpression of HIF-1α decreased myosin light chain phosphorylation in HIF-1α–null SMCs. Conclusions: In both normoxia and hypoxia, PASMC HIF-1α maintains low pulmonary vascular tone by decreasing myosin light chain phosphorylation. Compromised PASMC HIF-1α expression may contribute to the heightened vasoconstriction that characterizes pulmonary hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3