Differential Regulation of Endothelial Cell Permeability by cGMP via Phosphodiesterases 2 and 3

Author:

Surapisitchat James1,Jeon Kye-Im1,Yan Chen1,Beavo Joseph A.1

Affiliation:

1. From the Department of Pharmacology (J.S., J.A.B.), University of Washington School of Medicine, Seattle; and Cardiovascular Research Institute (K.-I.J., C.Y.), University of Rochester, NY.

Abstract

Endothelial barrier dysfunction leading to increased permeability and vascular leakage is an underlying cause of several pathological conditions, including edema and sepsis. Whereas cAMP has been shown to decrease endothelial permeability, the role of cGMP is controversial. Endothelial cells express cGMP-inhibited phosphodiesterase (PDE)3A and cGMP-stimulated PDE2A. Thus we hypothesized that the effect of cGMP on endothelial permeability is dependent on the concentration of cGMP present and on the relative expression levels of PDE2A and PDE3A. When cAMP synthesis was slightly elevated with a submaximal concentration of 7-deacetyl-7-( O -[ N -methylpiperazino]-γ-butyryl)-dihydrochloride–forskolin (MPB–forskolin), we found that low doses of either atrial natriuretic peptide (ANP) or NO donors potentiated the inhibitory effects of MPB–forskolin on thrombin-induced permeability. However, this inhibitory effect of forskolin was reversed at higher doses of ANP or NO. These data suggest that cGMP at lower concentrations inhibits PDE3A and thereby increases a local pool of cAMP, whereas higher concentrations cGMP activates PDE2A, reversing the effect. Inhibitors of PDE3A mimicked the effect of low-dose ANP on thrombin-induced permeability, and inhibition of PDE2A reversed the stimulation of permeability seen with higher doses of ANP. Finally, increasing PDE2A expression with tumor necrosis factor-α reversed the inhibition of permeability caused by low doses of ANP. As predicted, the effect of tumor necrosis factor-α on permeability was reversed by a PDE2A inhibitor. These findings suggest that the effect of increasing concentrations of cGMP on endothelial permeability is biphasic, which, in large part, is attributable to the relative amounts of PDE2A and PDE3A in endothelial cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3