Lipid Profiles and Heart Failure Risk

Author:

Wittenbecher Clemens123ORCID,Eichelmann Fabian23ORCID,Toledo Estefanía456,Guasch-Ferré Marta17ORCID,Ruiz-Canela Miguel456ORCID,Li Jun1ORCID,Arós Fernando68,Lee Chih-Hao19,Liang Liming1011ORCID,Salas-Salvadó Jordi61213ORCID,Clish Clary B.14ORCID,Schulze Matthias B.2315ORCID,Martínez-González Miguel Ángel1456ORCID,Hu Frank B.1710ORCID

Affiliation:

1. Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.W., M.G.-F., J.L., C.-H.L., M.A.M.-G., F.B.H.).

2. Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany (C.W., F.E., M.B.S.).

3. German Center for Diabetes Research (DZD), Neuherberg, Germany (C.W., F.E., M.B.S.).

4. Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain (E.T., M.R.-C., M.A.M.-G.).

5. IdiSNA (Instituto de investigación Sanitaria de Navarra), Pamplona, Spain (E.T., M.R.-C., M.A.M.-G.).

6. CIBER Fisiopatología de la Obesidad y Nutricion (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain (E.T., M.R.-C., F.A., J.S.-S., M.A.M.-G.).

7. Channing Division for Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, MA (M.G.-F., F.B.H.).

8. Department of Cardiology, University Hospital of Alava, Vitoria, Spain (F.A.).

9. Department of Molecular Metabolism (C.-H.L.), Harvard T.H. Chan School of Public Health, Boston, MA.

10. Department of Epidemiology (L.L., F.B.H.), Harvard T.H. Chan School of Public Health, Boston, MA.

11. Department of Biostatistics (L.L.), Harvard T.H. Chan School of Public Health, Boston, MA.

12. Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain (J.S.-S.).

13. Institut d’Investigació Sanitària Pere Virgili (IISPV), University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, Spain (J.S.-S.).

14. Broad Institute of MIT and Harvard, Cambridge, MA (C.B.C.).

15. Institute of Nutritional Science, University of Potsdam, Germany (M.B.S.).

Abstract

Rationale: Altered lipid metabolism has been implicated in heart failure (HF) development, but no prospective studies have examined comprehensive lipidomics data and subsequent risk of HF. Objective: We aimed to link single lipid metabolites and lipidomics networks to the risk of developing HF. Methods and Results: Discovery analyses were based on 216 targeted lipids in a case-control study (331 incident HF cases and 507 controls, matched by age, sex, and study center), nested within the PREDIMED (Prevención con Dieta Mediterránea) study. Associations of single lipids were examined in conditional logistic regression models. Furthermore, lipidomics networks were linked to HF risk in a multistep workflow, including machine learning–based identification of the HF-related network clusters, and regression-based discovery of the HF-related lipid patterns within these clusters. If available, significant findings were externally validated in a subsample of the EPIC-Potsdam cohort (2414 at-risk participants, including 87 incident HF cases). After confounder-adjustments, 2 lipids were significantly associated with HF risk in both cohorts: CER (ceramide) 16:0 (relative risk [RR] per SD in PREDIMED, 1.28 [95% CI, 1.13–1.47]) and phosphatidylcholine 32_0 (RR per SD in PREDIMED, 1.23 [95% CI, 1.08–1.41]). Additionally, lipid patterns in several network clusters were associated with HF risk in PREDIMED. Adjusted for standard risk factors, an internally cross-validated score based on the significant HF-related lipids that were identified in the network analysis in PREDIMED was associated with a higher HF risk (20 lipids, RR per SD, 2.33 [95% CI, 1.93%–2.81%). Moreover, a lipid score restricted to the externally available lipids was significantly associated with HF incidence in both cohorts (6 lipids, RRs per SD, 1.30 [95% CI, 1.14–1.47] in PREDIMED, and 1.46 [95% CI, 1.17–1.82] in EPIC-Potsdam). Conclusions: Our study identified and validated 2 lipid metabolites and several lipidomics patterns as potential novel biomarkers of HF risk. Lipid profiling may capture preclinical molecular alterations that predispose for incident HF. Registration: URL: https://www.isrctn.com/ISRCTN35739639 ; Unique identifier: ISRCTN35739639.

Funder

MEC | Instituto de Salud Carlos III

Centro Nacional de Investigaciones Cardiovasculares

Ministerio de Ciencia e Innovación

EC | European Regional Development Fund

Generalitat de Catalunya

Consejería de Salud, Junta de Andalucía

Regional Government of Navarra

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

HHS | NIH | National Heart, Lung, and Blood Institute

Bundesministerium für Bildung und Forschung

European Union

Deutsche Krebshilfe

Joint Programming Initiative A healthy diet for a healthy life

Bundesministerium für Bildung und Forschung | German Center for Diabetes Research

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3