Lgr4 Governs a Pro-Inflammatory Program in Macrophages to Antagonize Post-Infarction Cardiac Repair

Author:

Huang Chun-Kai12,Dai Daopeng12,Xie Hongyang12,Zhu Zhengbin12,Hu Jian12,Su Min3,Liu Mingyao4,Lu Lin1,Shen Weifeng12,Ning Guang5,Wang Jiqiu5,Zhang Ruiyan12,Yan Xiaoxiang12ORCID

Affiliation:

1. From the Department of Cardiology (C.-K.H., D.D., H.X., Z.Z., J.H., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China

2. Ruijin Hospital, Institute of Cardiovascular Diseases (C.-K.H., D.D., H.X., Z.Z., J.H., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China

3. Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Guangdong, PR China (M.S.)

4. Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, PR China (M.L.).

5. Department of Endocrinology and Metabolism (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China

Abstract

Rationale: Macrophages are critically involved in wound healing following myocardial infarction (MI). Lgr4, a member of LGR (leucine-rich repeat-containing G protein-coupled receptor) family, is emerging as a regulator of macrophage-associated immune responses. However, the contribution of Lgr4 to macrophage phenotype and function in the context of MI remains unclear. Objective: To determine the role of macrophage Lgr4 in MI and to dissect the underlying mechanisms. Methods and Results: During early inflammatory phase of MI, infarct macrophages rather than neutrophils expressed high level of Lgr4. Macrophage-specific Lgr4 knockout mice had no baseline cardiovascular defects but manifested improved heart function, modestly reduced infarct size, decreased early mortality due to cardiac rupture, and ameliorated adverse remodeling after MI. Improved outcomes in macrophage-specific Lgr4 knockout mice subjected to MI were associated with mitigated ischemic injury and optimal infarct healing, as determined by reduction of cardiac apoptosis in the peri-infarct zone, attenuation of local myocardial inflammatory response, decrease of matrix metalloproteinase expression in the infarct, enhancement of angiogenesis, myofibroblast proliferation, and collagen I deposition in reparative granulation tissue as well as formation of collagen-rich scar. More importantly, macrophage-specific Lgr4 knockout infarcts had reduced numbers of infiltrating leukocytes and inflammatory macrophages but harbored abundant reparative macrophage subsets. Lgr4-null infarct macrophages exhibited a less inflammatory transcriptional signature. These findings were further supported by transcriptomic profiling data showing repression of multiple pathways and broad-spectrum genes associated with proinflammatory responses in macrophage-specific Lgr4 knockout infarcts. Notably, we discovered that Lgr4-mediated functional phenotype programing in infarct macrophages was at least partly attributed to regulation of AP (activator protein)-1 activity. We further demonstrated that the synergistic effects of Lgr4 on AP-1 activation in inflammatory macrophages occurred via enhancing CREB (cAMP response element-binding protein)-mediated c-Fos , Fosl1 , and Fosb transactivation. Conclusions: Together, our data highlight the significance of Lgr4 in governing proinflammatory phenotype of infarct macrophages and postinfarction repair.

Funder

NSFC

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3