Three-Dimensional Imaging Provides Detailed Atherosclerotic Plaque Morphology and Reveals Angiogenesis After Carotid Artery Ligation

Author:

Becher Tobias123,Riascos-Bernal Dario F.4,Kramer Daniel J.1,Almonte Vanessa M.4,Chi Jingy1,Tong Tao5,Oliveira-Paula Gustavo H.4,Koleilat Issam6,Chen Wei78,Cohen Paul1,Sibinga Nicholas E.S.4ORCID

Affiliation:

1. From the Laboratory of Molecular Metabolism (T.B., D.J.K., J.C., P.C.), The Rockefeller University, NY

2. DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (T.B.)

3. First Department of Medicine (Division of Cardiology), University Medical Center Mannheim, Germany (T.B.).

4. (Cardiology Division) Department of Medicine, Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute (D.F.R.-B., V.M.A., G.H.O.-P., N.E.S.S.), Albert Einstein College of Medicine, Bronx, NY

5. Bio-Imaging Resource Center (T.T.), The Rockefeller University, NY

6. Department of Cardiothoracic and Vascular Surgery (Division of Vascular Surgery), Montefiore Medical Center, Bronx, NY (I.K.)

7. Department of Medicine (Nephrology Division) (W.C.), Albert Einstein College of Medicine, Bronx, NY

8. Department of Medicine, University of Rochester School of Medicine and Dentistry, NY (W.C.).

Abstract

Rationale: Remodeling of the vessel wall and the formation of vascular networks are dynamic processes that occur during mammalian embryonic development and in adulthood. Plaque development and excessive neointima formation are hallmarks of atherosclerosis and vascular injury. As our understanding of these complex processes evolves, there is a need to develop new imaging techniques to study underlying mechanisms. Objective: We used tissue clearing and light-sheet microscopy for 3-dimensional (3D) profiling of the vascular response to carotid artery ligation and induction of atherosclerosis in mouse models. Methods and Results: Adipo-Clear and immunolabeling in combination with light-sheet microscopy were applied to image carotid arteries and brachiocephalic arteries, allowing for 3D reconstruction of vessel architecture. Entire 3D neointima formations with different geometries were observed within the carotid artery and scored by volumetric analysis. Additionally, we identified a CD31-positive adventitial plexus after ligation of the carotid artery that evolved and matured over time. We also used this method to characterize plaque extent and composition in the brachiocephalic arteries of ApoE-deficient mice on high-fat diet. The plaques exhibited inter-animal differences in terms of plaque volume, geometry, and ratio of acellular core to plaque volume. A 3D reconstruction of the endothelium overlying the plaque was also generated. Conclusions: We present a novel approach to characterize vascular remodeling in adult mice using Adipo-Clear in combination with light-sheet microscopy. Our method reconstructs 3D neointima formation after arterial injury and allows for volumetric analysis of remodeling, in addition to revealing angiogenesis and maturation of a plexus surrounding the carotid artery. This method generates complete 3D reconstructions of atherosclerotic plaques and uncovers their volume, geometry, acellular component, surface, and spatial position within the brachiocephalic arteries. Our approach may be used in a number of mouse models of cardiovascular disease to assess vessel geometry and volume. Visual Overview: An online visual overview is available for this article.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3