Improving Outcome Predictions for Patients Receiving Mechanical Circulatory Support by Optimizing Imputation of Missing Values

Author:

Jaeger Byron C.1ORCID,Cantor Ryan12,Sthanam Venkata12,Xie Rongbing12,Kirklin James K.12,Rudraraju Ramaraju12ORCID

Affiliation:

1. University of Alabama at Birmingham, AL (B.C.J., R.C., V.S., R.X., J.K.K., R.R.).

2. Kirklin Institute for Research in Surgical Outcomes (R.C., V.S., R.X., J.K.K., R.R.).

Abstract

Background: Risk prediction models play an important role in clinical decision making. When developing risk prediction models, practitioners often impute missing values to the mean. We evaluated the impact of applying other strategies to impute missing values on the prognostic accuracy of downstream risk prediction models, that is, models fitted to the imputed data. A secondary objective was to compare the accuracy of imputation methods based on artificially induced missing values. To complete these objectives, we used data from the Interagency Registry for Mechanically Assisted Circulatory Support. Methods: We applied 12 imputation strategies in combination with 2 different modeling strategies for mortality and transplant risk prediction following surgery to receive mechanical circulatory support. Model performance was evaluated using Monte-Carlo cross-validation and measured based on outcomes 6 months following surgery using the scaled Brier score, concordance index, and calibration error. We used Bayesian hierarchical models to compare model performance. Results: Multiple imputation with random forests emerged as a robust strategy to impute missing values, increasing model concordance by 0.0030 (25th–75th percentile: 0.0008–0.0052) compared with imputation to the mean for mortality risk prediction using a downstream proportional hazards model. The posterior probability that single and multiple imputation using random forests would improve concordance versus mean imputation was 0.464 and >0.999, respectively. Conclusions: Selecting an optimal strategy to impute missing values such as random forests and applying multiple imputation can improve the prognostic accuracy of downstream risk prediction models.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3