Acute and Chronic Smooth Muscle Cell Apoptosis After Mechanical Vascular Injury Can Occur Independently of the Fas-Death Pathway

Author:

Sata Masataka1,Sugiura Seiryo1,Yoshizumi Masao1,Ouchi Yasuyoshi1,Hirata Yasunobu1,Nagai Ryozo1

Affiliation:

1. From the Department of Cardiovascular Medicine (M.S., S.S., Y.H., R.N.) and the Department of Geriatric Medicine (M.Y., Y.O.), University of Tokyo, Graduate School of Medicine, Tokyo, Japan.

Abstract

Vascular smooth muscle cell (VSMC) apoptosis has been demonstrated in vascular lesions, such as atherosclerotic and postangioplasty restenotic lesions. Balloon injury also induces VSMC apoptosis. Fas is a death factor that mediates apoptosis when it is activated by its ligand, FasL. Fas-mediated apoptosis was found to be implicated in the pathogenesis of vascular diseases in which Fas/FasL expression was detected. We investigated whether the Fas/FasL interaction mediated acute and chronic VSMC apoptosis and lesion formation in a vascular injury model that may resemble balloon angioplasty. A large spring wire was inserted into the femoral artery of C3H/HeJ (wild-type), C3H- gld (Fas ligand−/−), and C3H- lpr (Fas−/−) mice. The wire was left in place for 1 minute to denude and expand the artery. Massive apoptosis was observed in medial VSMCs from 1 to 7 hours later. There was no difference in the number of apoptotic cells among the 3 groups of mice 4 hours after injury. At 4 weeks, the injured arteries presented signs of concentric neointimal hyperplasia composed exclusively of VSMCs. There was no difference in the degree of neointima hyperplasia (intima/media ratios were as follows: wild type 1.4±0.3, gld 1.0±0.2, and lpr 1.3±0.2) or in the number of apoptotic nuclei among the 3 groups. These findings suggest the existence of other signaling pathways for acute and chronic VSMC apoptosis, at least that induced by mechanical vascular injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3