Myeloperoxidase and Hypochlorite, but Not Copper Ions, Oxidize Heparin-Bound LDL Particles and Release Them From Heparin

Author:

Pentikäinen Markku O.1,Öörni Katariina1,Kovanen Petri T.1

Affiliation:

1. From the Wihuri Research Institute, Helsinki, Finland.

Abstract

Abstract A key factor in atherosclerosis is the retention of low density lipoprotein (LDL) in the extracellular matrix of the arterial intima, where it binds to the negatively charged glycosaminoglycan chains of proteoglycans. Oxidation may lead to modification of the lysine residues of apolipoprotein B-100 of LDL, which normally mediate the binding of LDL to glycosaminoglycans. Here, we studied whether various modes of oxidation can release LDL from heparin, a glycosaminoglycan with a strong negative charge, in vitro. We found that copper ions were unable to oxidize heparin-bound LDL particles because of their redox inactivation by the glycosaminoglycans. In contrast, myeloperoxidase and hypochlorite, a product of myeloperoxidase, were able to oxidize heparin-bound LDL, and this oxidation led to the release of the oxidized particles from heparin. When the released LDL particles were compared with the residual heparin-bound LDL particles, the released particles were more electronegative and contained more modified lysine residues than did the particles that remained bound. Because human atherosclerotic lesions contain catalytically active myeloperoxidase and (lipo)proteins modified by hypochlorite, the results suggest that myeloperoxidase-secreting monocytes/macrophages in the arterial intima can oxidize and extract LDL from the extracellular matrix with ensuing uptake by the macrophages of the oxidized and released LDL, with eventual formation of foam cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3