Affiliation:
1. From the Wihuri Research Institute, Helsinki, Finland.
Abstract
Abstract
—
A key factor in atherosclerosis is the retention of low density lipoprotein (LDL) in the extracellular matrix of the arterial intima, where it binds to the negatively charged glycosaminoglycan chains of proteoglycans. Oxidation may lead to modification of the lysine residues of apolipoprotein B-100 of LDL, which normally mediate the binding of LDL to glycosaminoglycans. Here, we studied whether various modes of oxidation can release LDL from heparin, a glycosaminoglycan with a strong negative charge, in vitro. We found that copper ions were unable to oxidize heparin-bound LDL particles because of their redox inactivation by the glycosaminoglycans. In contrast, myeloperoxidase and hypochlorite, a product of myeloperoxidase, were able to oxidize heparin-bound LDL, and this oxidation led to the release of the oxidized particles from heparin. When the released LDL particles were compared with the residual heparin-bound LDL particles, the released particles were more electronegative and contained more modified lysine residues than did the particles that remained bound. Because human atherosclerotic lesions contain catalytically active myeloperoxidase and (lipo)proteins modified by hypochlorite, the results suggest that myeloperoxidase-secreting monocytes/macrophages in the arterial intima can oxidize and extract LDL from the extracellular matrix with ensuing uptake by the macrophages of the oxidized and released LDL, with eventual formation of foam cells.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献