Affiliation:
1. From the UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA.
Abstract
Background—
Myocardial scars harbor areas of slow conduction and display abnormal electrograms. Pace-mapping at these sites can generate a 12-lead ECG morphological match to a targeted ventricular tachycardia (VT), and in some instances, multiple exit morphologies can result. At times, this can also result in the initiation of VT, termed pace-mapped induction (PMI). We hypothesized that in patients undergoing catheter ablation of VT, scar substrates with multiple exit sites (MES) identified during pace-mapping have improved freedom from recurrent VT, and PMI of VT predicts successful sites of termination during ablation.
Methods and Results—
High-density mapping was performed in all subjects to delineate scar (0.5–1.5 mV). Sites with abnormal electrograms were tagged, stimulated (bipolar 10 mA at 2 ms), and targeted for ablation. MES was defined as >1 QRS morphology from a single pacing site. PMI was defined as initiation of VT during pace-mapping (400–600 ms). In a 2-year period, 44 consecutive patients with scar-mediated VT underwent mapping and ablation. MES were observed during pace-mapping in 25 patients (57%). At 9 months, 74% of patients who exhibited MES during pace-mapping had no recurrence of VT compared with 42% of those without MES observed (
P
=0.024), with an overall freedom from VT of 61%. Thirteen patients (30%) demonstrated PMI, and termination of VT was seen in 95% (18/19) of sites where ablation was performed.
Conclusions—
During pace-mapping, electrograms that exhibit MES and PMI may be specific for sites critical to reentry. These functional responses hold promise for identifying important sites for catheter ablation of VT.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献