Active oxygen species play a role in mediating platelet aggregation and cyclic flow variations in severely stenosed and endothelium-injured coronary arteries.

Author:

Yao S K1,Ober J C1,Gonenne A1,Clubb F J1,Krishnaswami A1,Ferguson J J1,Anderson H V1,Gorecki M1,Buja L M1,Willerson J T1

Affiliation:

1. Cardiovascular Research Laboratory, St. Luke's Episcopal Hospital/Texas Heart Institute, Houston.

Abstract

A canine model with cyclic flow variations (CFVs) in stenosed and endothelium-injured coronary arteries was used to examine the role of active oxygen species in platelet aggregation in vivo. We studied 90 anesthetized dogs in which the pericardial cavity was opened and the heart was exposed. The velocity of blood flow in the left anterior descending coronary artery (LAD) was monitored by a pulsed Doppler flow probe. In 67 dogs, the LADs were stenosed by applying external constrictors at the site where the endothelium was mechanically injured. CFVs developed in all 67 dogs. Treatment with the antioxidants recombinant human copper-zinc superoxide dismutase (r-h-CuZnSOD), recombinant human manganese superoxide dismutase (r-h-MnSOD), and catalase eliminated platelet aggregation-associated coronary CFVs in 63%, 62%, and 64% of animals, respectively. Intravenous infusion of epinephrine restored CFVs in most dogs. Ketanserin, a serotonin (5-hydroxytryptamine2) receptor antagonist, abolished epinephrine-restored CFVs and eliminated CFVs in dogs in which CFVs had not been eliminated by free radical scavengers. In an additional 23 dogs, the LADs were stenosed but not mechanically injured. For control studies, saline was infused into the LADs of 5 dogs. Xanthine/xanthine oxidase was infused into the LADs of 8 dogs and induced CFVs in 4. Hydrogen peroxide was infused into the other 10 dogs and induced CFVs in 9. Histological analysis of the coronary artery revealed that the intima was significantly injured by the infusion. In ex vivo platelet aggregation studies, the in vivo treatment with r-h-CuZnSOD, r-h-MnSOD, and catalase significantly inhibited platelet aggregation induced by platelet-activating factor. Thus, active oxygen species are involved in mediating platelet aggregation and cyclic flow variations in stenosed and endothelium-injured canine coronary arteries in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3