Apolipoprotein AII Enrichment of HDL Enhances Their Affinity for Class B Type I Scavenger Receptor but Inhibits Specific Cholesteryl Ester Uptake

Author:

Pilon Antoine1,Briand Olivier1,Lestavel Sophie1,Copin Corinne1,Majd Zouher1,Fruchart Jean-Charles1,Castro Graciela1,Clavey Véronique1

Affiliation:

1. From INSERM U325, Institut Pasteur de Lille et Université Lille 2, Lille, France.

Abstract

Abstract —Apolipoproteins of high density lipoprotein (HDL) and especially apolipoprotein (apo)AI and apoAII have been demonstrated as binding directly to the class B type I scavenger receptor (SR-BI), the HDL receptor that mediates selective cholesteryl ester uptake. However, the functional relevance of the binding capacity of each apolipoprotein is still unknown. The human adrenal cell line, NCI-H295R, spontaneously expresses a high level of SR-BI, the major apoAI binding protein in these cells. As previously described for murine SR-BI, free apoAI, palmitoyl-oleoyl-phosphatidylcholine (POPC)-AI, and HDL are good ligands for human SR-BI. In vitro displacement of apoAI by apoAII in HDLs or in Lp AI purified from HDL by immunoaffinity enhances their ability to compete with POPC-AI to bind to SR-BI and also enhances their direct binding capacity. The next step was to determine whether the higher affinity of apoAII for SR-BI correlated with the specific uptake of cholesteryl esters from these HDLs. Free apoAII and, to a lesser extent, free apoAI that were added to the cell medium during uptake experiments inhibited the specific uptake of [ 3 H]cholesteryl esters from HDL, indicating that binding sites on cells were the same as cholesteryl ester uptake sites. In direct experiments, the uptake of [ 3 H]cholesteryl esters from apoAII-enriched HDL was highly reduced compared with the uptake from native HDL. These results demonstrate that in the human adrenal cell line expressing SR-BI as the major HDL binding protein, efficient apoAII binding has an inhibitory effect on the delivery of cholesteryl esters to cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3