Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism.

Author:

Steinbrecher U P,Witztum J L,Parthasarathy S,Steinberg D

Abstract

The monocyte/macrophage appears to be the precursor of many of the lipid-laden cells in atherosclerotic lesions, but the mechanism by which these cells accumulate cholesterol to become foam cells remains unclear. We have previously reported that cultured endothelial cells can modify low density lipoprotein (LDL) in a manner that leads to rapid uptake by the acetyl LDL receptor of macrophages. This modification involves free radical-induced peroxidation of LDL and is accompanied by many changes in the physicochemical properties of LDL including increased electrophoretic mobility, increased density, decreased content of esterified cholesterol, hydrolysis of phosphatidylcholine, and fragmentation of apolipoprotein B. Under conditions highly favorable to oxidation, a similar modification can occur even in the absence of cells. In the present studies, oxidation of LDL simply by exposure to 5 microM Cu++ resulted in a modification that was indistinguishable from that produced by endothelial cells. Moreover, it was demonstrated that LDL oxidation by either method is accompanied by a marked decreased in amino group reactivity, comparable to that seen with the chemical modifications of LDL that lead to recognition by the acetyl LDL receptor. Inhibitors of proteolytic enzymes did not reduce fragmentation of apolipoprotein B during oxidation. The rate of catabolism of intravenously injected oxidized LDL in guinea pigs was very rapid, and over 80% of the degradation occurred in the liver. The studies demonstrate that all of the changes associated with endothelial cell modification of LDL can be attributed to oxidation. The cells can, however, promote oxidation under conditions where it would otherwise occur very slowly.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference34 articles.

Cited by 466 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3