Affiliation:
1. From the Departments of Cell Biology (J.D.S., J.M.B., J.B., M.S.), Cardiovascular Medicine (J.D.S.), and Quantitative Health Sciences (Y.X., J.Barnard), Cleveland Clinic Foundation, Cleveland Ohio; and the Department of Molecular Medicine (J.D.S.), Case School of Medicine, Cleveland Ohio.
Abstract
Objective—
Apolipoprotein (apo) E-deficient mice are hypercholesterolemic and develop atherosclerosis on low-fat chow diets; however, the genetic background strain has a large effect on atherosclerosis susceptibility. This study aimed to determine the genetic regions associated with strain effects on lesion area.
Methods and Results—
We performed a strain intercross between atherosclerosis sensitive DBA/2 and atherosclerosis resistant AKR apoE-deficient mice. Aortic root lesion area, total cholesterol, body weights, and complete blood counts were ascertained for 114 male and 95 female F
2
progeny. A high-density genome scan was performed using a mouse single nucleotide polymorphism chip yielding 1967 informative polymorphic markers. Quantitative trait locus (QTL) statistical analyses were performed. Novel loci associated with lesion or log lesion area were identified for the female and male F
2
cohorts. The atherosclerosis QTLs in female mice reside on chromosomes 15, 5, 3, and 13, and in male mice on chromosomes 17, 18, and 2. QTL were also identified for body weight, total cholesterol, and blood count parameters.
Conclusions—
Loci were identified for atherosclerosis susceptibility in a strain intercross study. The identity of the responsible genes at these loci remains to be determined.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献