Controlled Release of Basic Fibroblast Growth Factor From Gelatin Hydrogel Sheet Improves Structural and Physiological Properties of Vein Graft in Rat

Author:

Haraguchi Tomonori1,Okada Kenji1,Tabata Yasuhiko1,Maniwa Yoshimasa1,Hayashi Yoshitake1,Okita Yutaka1

Affiliation:

1. From Division of Cardiovascular, Thoracic, and Pediatric Surgery (T.H., K.O., Y.M., Y.O.), Kobe University Graduate School of Medicine, Kobe, Japan; Department of Biomaterials (Y.T.), Field of Tissue Engineering, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan; Division of Molecular Medicine and Medical Genetics (Y.H.), International Center for Medical Research and Treatment (ICMRT), Kobe University Graduate School of Medicine, Kobe, Japan.

Abstract

Objectives— Autologous vein grafts are still widely used, but their long-term patency is suboptimal. The objective of the current study was to determine whether wrapping a vein graft in gelatin hydrogel sheet incorporating basic fibroblast growth factor improves their mechanical and physiological properties. Methods and Results— Autologous femoral vein was interposed into the abdominal aorta in rats. The rats were divided into 3 groups: nontreated grafts (group A), grafts wrapped in basic fibroblast growth factor-free gelatin hydrogel sheet (group B), and grafts wrapped in basic fibroblast growth factor-impregnated gelatin hydrogel sheet (group C). On day 1, endothelial desquamation was observed in group A, and the media in groups A and B were disrupted, staining positive in the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. In contrast, the media in group C remained intact and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling–negative, associated with activation of MAPK. Graft dilation was significantly inhibited in groups B and C compared with group A, with those in group C showing the smallest degree of neointimal proliferation. At 8 weeks grafts in group C developed neointima with homogeneous elastic laminae, presence of rigid neoadventitia that displayed neovascularity, and the highest blood flow velocity. Conclusions— Wrapping vein grafts in basic fibroblast growth factor- impregnated gelatin hydrogel sheet improved their structural and physiological properties, and might therefore also improve long-term patency.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3