Chromosomal Location, Exon Structure, and Vascular Expression Patterns of the Human PDGFC and PDGFD Genes

Author:

Uutela Marko1,Laurén Juha1,Bergsten Erika1,Li Xuri1,Horelli-Kuitunen Nina1,Eriksson Ulf1,Alitalo Kari1

Affiliation:

1. From the Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Haartman Institute and Biomedicum Helsinki (M.U., J.L., K.A.), and the Department of Clinical Chemistry and Biomedicine and Laboratory Department of Helsinki University Central Hospital (N.H.-K.), University of Helsinki, Finland; and the Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Institutet, Stockholm, Sweden (X.L., E.B., U.E.).

Abstract

Background —Platelet-derived growth factor (PDGF), which is a major mitogen for vascular smooth muscle cells and has been implicated in the pathogenesis of arteriosclerosis, is composed of dimers of PDGF-A and PDGF-B polypeptide chains, encoded by different genes. Here, we have analyzed the chromosomal localization, structure, and expression of 2 newly identified human genes of the PDGF family, called PDGFC and PDGFD . Methods and Results —We used fluorescence in situ hybridization to locate PDGFC and PDGFD in chromosomes 4q32 and 11q22.3 to 23.2, respectively. Exon structures of PDGFC and PDGFD were determined by sequencing from genomic DNA clones. The coding region of PDGFC consists of 6 and PDGFD of 7 exons, of which the last 2 encode the C-terminal PDGF cystine knot growth factor homology domain. An N-terminal CUB domain is encoded by exons 2 and 3 of both genes, and a region of proteolytic cleavage involved in releasing and activating the growth factor domain is located in exon 4 in PDGFC and exon 5 in PDGFD . PDGF-C was expressed predominantly in smooth muscle cells and PDGF-D in fibroblastic adventitial cells, and both genes were active in cultured endothelial cells and in a variety of tumor cell lines. Both PDGF-C and PDGF-D also stimulated human coronary artery smooth muscle cells. ConclusionsPDGFC and PDGFD have similar genomic structures, which resemble those of the PDGFA and PDGFB genes. Their expression in the arterial wall and cultured vascular cells suggests that they can transduce proliferation/migration signals to pericytes and smooth muscle cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3