Myotubularin‐Related Protein14 Prevents Neointima Formation and Vascular Smooth Muscle Cell Proliferation by Inhibiting Polo‐Like Kinase1

Author:

Kong Ling‐Yao1ORCID,Liang Cui1,Li Peng‐Cheng1,Zhang Yi‐Wei2ORCID,Feng Sheng‐Dong3,Zhang Dian‐Hong1,Yao Rui1,Yang Lu‐Lu1,Hao Zheng‐Yang1,Zhang Hao45ORCID,Tian Xiao‐Xu1,Guo Chen‐Ran1,Du Bin‐Bin1,Dong Jian‐Zeng16ORCID,Zhang Yan‐Zhou1ORCID

Affiliation:

1. Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China

2. The Second School of Clinical Medicine Southern Medical University Guangzhou China

3. Department of Cardiology The 7th People’s Hospital of Zhengzhou Zhengzhou China

4. Department of Thoracic Surgery Union Hospital Wuhan China

5. Department of Cardiovascular Surgery Union Hospital Wuhan China

6. Department of Cardiology Beijing Anzhen Hospital Capital Medical University National Clinical Research Centre for Cardiovascular Diseases Beijing China

Abstract

Background Restenosis is one of the main bottlenecks in restricting the further development of cardiovascular interventional therapy. New signaling molecules involved in the progress have continuously been discovered; however, the specific molecular mechanisms remain unclear. MTMR14 (myotubularin‐related protein 14) is a novel phosphoinositide phosphatase that has a variety of biological functions and is involved in diverse biological processes. However, the role of MTMR14 in vascular biology remains unclear. Herein, we addressed the role of MTMR14 in neointima formation and vascular smooth muscle cell (VSMC) proliferation after vessel injury. Methods and Results Vessel injury models were established using SMC‐specific conditional MTMR14‐knockout and ‐transgenic mice. Neointima formation was assessed by histopathological methods, and VSMC proliferation and migration were assessed using fluorescence ubiquitination‐based cell cycle indicator, transwell, and scratch wound assay. Neointima formation and the expression of MTMR14 was increased after injury. MTMR14 deficiency accelerated neointima formation and promoted VSMC proliferation after injury, whereas MTMR14 overexpression remarkably attenuated this process. Mechanistically, we demonstrated that MTMR14 suppressed the activation of PLK1 (polo‐like kinase 1) by interacting with it, which further leads to the inhibition of the activation of MEK/ERK/AKT (mitogen‐activated protein kinase kinase/extracellular‐signal‐regulated kinase/protein kinase B), thereby inhibiting the proliferation of VSMC from the medial to the intima and thus preventing neointima formation. Conclusions MTMR14 prevents neointima formation and VSMC proliferation by inhibiting PLK1. Our findings reveal that MTMR14 serves as an inhibitor of VSMC proliferation and establish a link between MTMR14 and PLK1 in regulating VSMC proliferation. MTMR14 may become a novel potential therapeutic target in the treatment of restenosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3