Genetics of BAG3: A Paradigm for Developing Precision Therapies for Dilated Cardiomyopathies

Author:

Qu Hui‐Qi1ORCID,Feldman Arthur M.23,Hakonarson Hakon14567ORCID

Affiliation:

1. The Center for Applied Genomics, Children’s Hospital of Philadelphia Philadelphia PA

2. Department of Medicine, Division of Cardiology The Lewis Katz School of Medicine at Temple University Philadelphia PA

3. The Center for Neurovirology and Gene Editing The Lewis Katz School of Medicine at Temple University Philadelphia PA

4. Department of Pediatrics, The Perelman School of Medicine University of Pennsylvania Philadelphia PA

5. Division of Human Genetics Children’s Hospital of Philadelphia Philadelphia PA

6. Division of Pulmonary Medicine Children’s Hospital of Philadelphia Philadelphia PA

7. Faculty of Medicine University of Iceland Reykjavik Iceland

Abstract

Nonischemic dilated cardiomyopathy is a common form of heart muscle disease in which genetic factors play a critical etiological role. In this regard, both rare disease‐causing mutations and common disease‐susceptible variants, in the Bcl‐2–associated athanogene 3 ( BAG3 ) gene have been reported, highlighting the critical role of BAG3 in cardiomyocytes and in the development of dilated cardiomyopathy. The phenotypic effects of the BAG3 mutations help investigators understand the structure and function of the BAG3 gene. Indeed, we report herein that all of the known pathogenic/likely pathogenic variants affect at least 1 of 3 protein functional domains, ie, the WW domain, the second IPV (Ile‐Pro‐Val) domain, or the BAG domain, whereas none of the missense nontruncating pathogenic/likely pathogenic variants affect the proline‐rich repeat (PXXP) domain. A common variant, p.Cys151Arg, associated with reduced susceptibility to dilated cardiomyopathy demonstrated a significant difference in allele frequencies among diverse human populations, suggesting evolutionary selective pressure. As BAG3 ‐related therapies for heart failure move from the laboratory to the clinic, the ability to provide precision medicine will depend in large part on having a thorough understanding of the potential effects of both common and uncommon genetic variants on these target proteins. The current review article provides a roadmap that investigators can utilize to determine the potential interactions between a patient's genotype, their phenotype, and their response to therapeutic interventions with both gene delivery and small molecules.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3