Proteolytic Degradation Is a Major Contributor to Bioprosthetic Heart Valve Failure

Author:

Kostyunin Alexander E.1ORCID,Glushkova Tatiana V.1,Lobov Arseniy A.2ORCID,Ovcharenko Evgeny A.1,Zainullina Bozhana R.3ORCID,Bogdanov Leo A.1ORCID,Shishkova Daria K.1,Markova Victoria E.1ORCID,Asanov Maksim A.1ORCID,Mukhamadiyarov Rinat A.1ORCID,Velikanova Elena A.1ORCID,Akentyeva Tatiana N.1ORCID,Rezvova Maria A.1ORCID,Stasev Alexander N.1ORCID,Evtushenko Alexey V.1,Barbarash Leonid S.1,Kutikhin Anton G.1ORCID

Affiliation:

1. Department of Experimental Medicine Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo Russian Federation

2. Department of Regenerative Biomedicine Research Institute of Cytology St. Petersburg Russian Federation

3. Centre for Molecular and Cell Technologies St. Petersburg State University Research Park St. Petersburg State University, Universitetskaya Embankment St. Petersburg Russian Federation

Abstract

Background Whereas the risk factors for structural valve degeneration (SVD) of glutaraldehyde‐treated bioprosthetic heart valves (BHVs) are well studied, those responsible for the failure of BHVs fixed with alternative next‐generation chemicals remain largely unknown. This study aimed to investigate the reasons behind the development of SVD in ethylene glycol diglycidyl ether–treated BHVs. Methods and Results Ten ethylene glycol diglycidyl ether–treated BHVs excised because of SVD, and 5 calcified aortic valves (AVs) replaced with BHVs because of calcific AV disease were collected and their proteomic profile was deciphered. Then, BHVs and AVs were interrogated for immune cell infiltration, microbial contamination, distribution of matrix‐degrading enzymes and their tissue inhibitors, lipid deposition, and calcification. In contrast with dysfunctional AVs, failing BHVs suffered from complement‐driven neutrophil invasion, excessive proteolysis, unwanted coagulation, and lipid deposition. Neutrophil infiltration was triggered by an asymptomatic bacterial colonization of the prosthetic tissue. Neutrophil elastase, myeloblastin/proteinase 3, cathepsin G, and matrix metalloproteinases (MMPs; neutrophil‐derived MMP‐8 and plasma‐derived MMP‐9), were significantly overexpressed, while tissue inhibitors of metalloproteinases 1/2 were downregulated in the BHVs as compared with AVs, together indicative of unbalanced proteolysis in the failing BHVs. As opposed to other proteases, MMP‐9 was mostly expressed in the disorganized prosthetic extracellular matrix, suggesting plasma‐derived proteases as the primary culprit of SVD in ethylene glycol diglycidyl ether–treated BHVs. Hence, hemodynamic stress and progressive accumulation of proteases led to the extracellular matrix degeneration and dystrophic calcification, ultimately resulting in SVD. Conclusions Neutrophil‐ and plasma‐derived proteases are responsible for the loss of BHV mechanical competence and need to be thwarted to prevent SVD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3