Important Role of Rho-kinase in the Pathogenesis of Cardiovascular Inflammation and Remodeling Induced by Long-Term Blockade of Nitric Oxide Synthesis in Rats

Author:

Kataoka Chu1,Egashira Kensuke1,Inoue Shujiro1,Takemoto Masao1,Ni Weihua1,Koyanagi Masamichi1,Kitamoto Shiro1,Usui Makoto1,Kaibuchi Kozo1,Shimokawa Hiroaki1,Takeshita Akira1

Affiliation:

1. From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyushu University (C.K., K.E., S.I., M.T., W.N., M.K., S.K., M.U., H.S., A.T.), Fukuoka, Japan; and Division of Signal Tranduction, Nara Institute of Science and Technology (K.K.), Ikoma, Japan.

Abstract

Chronic inhibition of endothelial NO synthesis by the administration of N G -nitro- l -arginine methyl ester (L-NAME) to rats induces early vascular inflammation (monocyte infiltration into coronary vessels and monocyte chemoattractant protein-1 expression) as well as subsequent arteriosclerosis. The small GTPase Rho controls cell adhesion, motility, and proliferation and is activated by several growth factors such as angiotensin II. We investigated the effect of a specific inhibitor of Rho-kinase, Y-27632, in rats treated with L-NAME to determine the role of the Rho/Rho-kinase pathway in the development of arteriosclerosis. We found here increased activity of Rho/Rho-kinase after L-NAME administration and its prevention by angiotensin II type 1 receptor blockade. Hydralazine or lecithinized superoxide dismutase (l-SOD) did not affect Rho/Rho-kinase activity. Co-treatment with Y-27632 did not affect the L-NAME-induced increase in cardiovascular tissue ACE activity or L-NAME-induced decrease in plasma NO concentrations, but did prevent the L-NAME-induced early inflammation and late coronary arteriosclerosis. In addition, Y-27632 prevented the increased gene expression of monocyte chemoattractant protein-1 and transforming growth factor-β1 as well as cardiac fibrosis and glomerulosclerosis. These findings suggest that increased activity of Rho/Rho-kinase pathway mediated via the angiotensin II type 1 receptor may thus be important in the pathogenesis of early vascular inflammation and late remodeling induced by chronic inhibition of NO synthesis. The beneficial effects of Rho-kinase inhibition are not mediated by restoration of NO production. The Rho-kinase pathway could be a new therapeutic target for treatment of vascular diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3