Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities.

Author:

Sullivan M J1,Higginbotham M B1,Cobb F R1

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, NC 27710.

Abstract

This study was designed to determine the pathophysiologic basis of increased exercise ventilation in the presence of chronic heart failure. Sixty-four ambulatory patients with chronic heart failure and 38 age-matched normal control subjects performed exercise according to identical staged, symptom-limited bicycle exercise protocols with measurement of hemodynamic, ventilatory, and metabolic responses. Compared with normal subjects, ventilation and the ratio of ventilation to CO2 production (Ve/VCO2), and pulmonary capillary wedge pressure were elevated in patients at rest and during exercise. The ratio of pulmonary dead space to tidal volume (Vd/Vt) also was elevated in the heart failure group at rest and during exercise and was closely related to Ve/VCO2 (all r greater than .72, p less than .001). Rest and exercise arterial PCO2 regulation was normal in patients. Peak exercise Ve/VCO2 did not correlate with pulmonary vascular pressures, but was inversely related to cardiac output (r = -.49, p less than .001). Thus, neurohumoral ventilatory control mechanisms are intact in patients with chronic heart failure and act to maintain normal PaCO2 levels in the face of increased pulmonary dead space. Activation of abnormal reflexes due to hemodynamic derangements during exercise are not important in determining ventilation in the presence of chronic heart failure. The demonstration of a correlation between decreased cardiac output and increased ventilation in the patient group suggests that attenuated pulmonary perfusion may play a role in causing exercise hyperpnea in the presence of chronic heart failure by producing ventilation perfusion abnormalities and thereby increasing physiologic pulmonary dead space.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3