Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium.

Author:

Pogwizd S M,Corr P B

Abstract

The mechanisms responsible for malignant ventricular arrhythmias associated with reperfusion of ischemic myocardium were delineated with a computerized, three-dimensional mapping system, with simultaneous eight-level transmural recordings from 232 bipolar sites. In six chloralose-anesthetized cats, regional ischemia was induced for 10 min by occlusion of the left anterior descending coronary artery, followed by reperfusion. At 10 min after ischemia, just before reperfusion, total ventricular activation time during sinus rhythm was significantly delayed (63 +/- 8 vs 25 +/- 2 msec before ischemia, p less than .001). Ventricular tachycardia (VT) occurred within 15 sec after reperfusion and in three animals culminated in ventricular fibrillation. In 75% of cases of nonsustained VT, initiation occurred in the subendocardium, at the border of the reperfused zone via a mechanism not involving reentry, as determined by the fact that continuous activation was not apparent and the time from the end of the sinus beat to the beginning of VT (142 +/- 14 msec) was not associated with any intervening depolarizations. In the remaining 25% of cases of nonsustained VT, initiation of the VT resulted from intramural reentry in the subendocardium adjacent to the site of delayed midmyocardial activation from the preceding sinus beat (total activation time = 151 +/- 9 msec, p less than .001 vs just before reperfusion). This reentrant mechanism was similar to that responsible for the majority of cases of VT during ischemia without reperfusion. Maintenance of VT during reperfusion occurred by nonreentrant mechanisms as well as by intramural reentry, with most cases of VT involving both mechanisms. Ventricular tachycardia leading to ventricular fibrillation was initiated in the subendocardium at the border of the reperfused zone by a nonreentrant mechanism and was maintained by both nonreentrant and reentrant mechanisms, at times in combination in the same beat. The coupling interval of the first ectopic beat of VT leading to ventricular fibrillation was not significantly different from that of nonsustained VT (199 +/- 16 vs 189 +/- 9 msec, p = NS). However, during the transition from VT to ventricular fibrillation, nonreentrant mechanisms arising both in the subendocardium and subepicardium led to very rapid acceleration of the tachycardia to the coupling interval of 92 +/- 2 msec, resulting in enhanced functional block and further conduction delay, with the total activation time of the transition beats exceeding the coupling interval of the tachycardia.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference54 articles.

1. Electrophysiologic effects of coronary occlusion and reperfusion. Observations of dispersion of refractoriness and ventricular automaticity.

2. Dispersion of effective refractory period during abrupt reperfusion of ischemic myocardium in dogs;Naimi S;Am J Cardiol,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3