Detection, localization, and quantitation of bioprosthetic mitral valve regurgitation. An in vitro two-dimensional color-Doppler flow-mapping study.

Author:

Vandenberg B F1,Dellsperger K C1,Chandran K B1,Kerber R E1

Affiliation:

1. Department of Internal Medicine, University of Iowa, Iowa City 52242.

Abstract

The usefulness of two-dimensional color-Doppler flow-imaging (2D Doppler) in the detection, localization, and quantitation of bioprosthetic mitral valve regurgitation is uncertain. Mitral bioprostheses, before and after the creation of transvalvular (n = 33), paravalvular (n = 17), or combined (n = 23) defects, were mounted in a pulsed duplication system (flow rates, 2.5-6.5 l/min; pulse rate, 70 beats/min). An Aloka 880 2D Doppler system (Japan) was used to image the regurgitant jets in the simulated left atrial chamber, analogous to images obtained with transesophageal echocardiography. Jet area was corrected to an estimate of stroke volume: 2D Doppler measurements were divided by [(valve effective orifice area) X (continuous-wave Doppler-determined mean diastolic filling velocity)]/pulse rate. Regurgitant fraction and regurgitant volume were measured by an electromagnetic flow probe. 2D Doppler correctly identified the presence and location of paravalvular regurgitation. In transvalvular and combined transvalvular-paravalvular defects, there were six incorrect interpretations, all having transvalvular regurgitant volumes less than 4 ml/beat. In the presence of transvalvular regurgitation, jet area, length, and width correlated linearly with regurgitant volume (r = 0.82, 0.80, and 0.68, respectively; p less than 0.0001) and regurgitant fraction (r = 0.62, 0.61, and 0.45, respectively; p less than 0.001). Correlations with regurgitant fraction were improved when 2D Doppler measurements were corrected for stroke volume (r = 0.78, 0.79, and 0.67, respectively; p less than 0.0001). Mitral bioprostheses with transvalvular defects were also studied at varying flow rates (3.2-7.5 l/min) and pulse rates (70, 90, and 110 beats/min). The correlation between jet area and regurgitant volume was improved with a second-order polynomial regression (r = 0.93, p less than 0.0001). Our conclusions are that 1) in this in vitro model analogous to transesophageal imaging, 2D Doppler accurately detects and localizes bioprosthetic mitral valve regurgitation; 2) in transvalvular bioprosthetic mitral valve regurgitation, 2D Doppler measurement of jet area has a curvilinear relation with regurgitant volume, and correlation with regurgitant fraction is improved with correction for stroke volume; and 3) in paravalvular bioprosthetic mitral valve regurgitation, correlations between 2D Doppler measurements and regurgitant volumes are weaker, possibly because of jet eccentricity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3