Role of Akt Signaling in Mitochondrial Survival Pathway Triggered by Hypoxic Preconditioning

Author:

Uchiyama Takamichi1,Engelman Richard M.1,Maulik Nilanjana1,Das Dipak K.1

Affiliation:

1. From the Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington.

Abstract

Background— The signaling pathways that control ischemia/reperfusion-induced cardiomyocyte apoptosis in heart have not been fully defined. In this study, we investigated whether Akt signaling has a role in the antiapoptotic pathways of preconditioning against hypoxia/reoxygenation (H/R). Methods and Results— Primary cultures of adult rat ventricular myocytes (ARVMs) were subjected to preconditioning (PC) by exposing the cells to 10 minutes of hypoxia followed by 30 minutes of reoxygenation. Non-PC and PC myocytes were subjected to 90 minutes of hypoxia followed by 120 minutes of reoxygenation. Hypoxic-PC protected the myocytes from subsequent H/R injury, as evidenced by decreased apoptosis and LDH release and increased cell viability. H/R-induced cytochrome c release and activation of caspase-3 and -9 were blocked by PC. This protective effect was inhibited by treating the cells with LY294002 (50 μmol/L), a PI3 kinase inhibitor, for 10 minutes before and during PC. PC also induced phosphorylation of Akt and BAD. Protein levels of Bcl-2 in mitochondria were maintained in PC. ARVMs were infected with either a control adenovirus (Adeno lac-Z), an adenovirus expressing dominant-negative Akt, or an adenovirus expressing constitutively active Akt. Ectopic overexpression of constitutively active Akt protected ARVMs from apoptosis induced by hypoxia/reoxygenation compared with Adeno lac-Z. In contrast, dominant negative Akt overexpression abolished the antiapoptotic effect of PC. Conclusions— Our data demonstrated that in adult cardiomyocytes, the antiapoptotic effect of PC against H/R requires Akt signaling leading to phosphorylation of BAD, inhibition of cytochrome c release, and prevention of caspase activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3