Polymorphic Reentrant Ventricular Tachycardia in the Isolated Rabbit Heart Studied by High-Density Mapping

Author:

Boersma Lucas1,Zetelaki Zoltan1,Brugada Josep1,Allessie Maurits1

Affiliation:

1. From the Physiology Department, Maastricht University, Maastricht, the Netherlands, and the Arrhythmia Section, Cardiovascular Institute, Hospital Clínic, Barcelona, Spain (J.B.).

Abstract

Background The role of dispersion of refractoriness and reentry for the genesis of polymorphic ventricular tachycardia (VT) has recently become emphasized. We investigated the mechanisms of polymorphic arrhythmias in a 2D preparation confining an area of prolonged refractoriness. Methods and Results In 16 Langendorff-perfused rabbit hearts, a sheet of left ventricular epicardium was obtained by a cryoprocedure. Enhanced spatial heterogeneity in a refractory period was created by cooling a central region (diameter=12 mm). This markedly prolonged the refractory period (by 36±14 ms) inside but only slightly prolonged it (by 5±11 ms) outside the cooled area (n=6). During a control procedure, programmed stimulation with up to 3 premature stimuli induced an episode of monomorphic VT in only 1 of 10 hearts. During regional cooling, episodes of polymorphic VT with a maximum duration of 35 seconds could be induced in all hearts. High-resolution mapping (229 electrodes) of epicardial activation revealed that polymorphic VT was caused by a functional reentrant circuit located partially within the region of prolonged refractoriness. The reentrant wavefront was continuously shifting along the border of the cooled region, resulting in beat-to-beat changes in the excitation pattern. Spontaneous termination of polymorphic VT occurred either by a shift of the reentrant circuit outside the cooled region or by a block in the central common pathway during figure-of-8 reentry in the region of prolonged refractoriness. Conclusions A shifting functional reentrant circuit was the underlying mechanism of polymorphic VT in a substrate of enhanced spatial heterogeneity of refractoriness.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3