Noncultured, Autologous, Skeletal Muscle Cells Can Successfully Engraft Into Ovine Myocardium

Author:

Borenstein Nicolas1,Bruneval Patrick1,Hekmati Mehrak1,Bovin Christophe1,Behr Luc1,Pinset Christian1,Laborde François1,Montarras Didier1

Affiliation:

1. From the IMM Recherche, Institut Mutualiste Montosuris (N.B., M.H., L.B., F.L.); the Laboratoire d’Anatomie Pathologique, Hôpital Européen Georges Pompidou (P.B.); the Département d’Anatomie Pathologique, Institut Mutualiste Montsouris (C.B.); CELOGOS (C.P.); and the Unité de Génétique Moléculaire du Développement (D.M.), Institut Pasteur, Paris France.

Abstract

Background— There is compelling evidence showing that cellular cardiomyoplasty can improve cardiac function. Considering the potential benefit of using noncultured muscle cells (little time, lower cost, reduced risk of contamination), we investigated the feasibility of grafting cells obtained directly after enzymatic dissociation of skeletal muscle biopsies into ovine myocardium. We hypothesized that those noncultured muscle cells would engraft massively. Methods and Results— Autologous, intramyocardial skeletal muscle cell implantation was performed in 8 sheep. A skeletal muscle biopsy sample (≈10 g) was explanted from each animal. The sheep were left to recover for ≈3 hours and reanesthetized when the cells were ready for implantation. A left fifth intercostal thoracotomy was performed, and 10 epicardial injections of the muscle preparation (between 10 and 20 million cells) were carried out. All sheep were euthanized 3 weeks after myocardial implantation. Immunohistochemistry was performed with monoclonal antibodies to a fast skeletal isoform of myosin heavy chain. Skeletal myosin heavy-chain expression was detected in all slides at 3 weeks after implantation in 8 of 8 animals, confirming engraftment of skeletal muscle cells. Massive areas of engraftment (from 2 to 9 mm in diameter) or discrete loci were noted within the myocardial wall. Conclusions— Our results indicate that noncultured skeletal muscle cells can successfully and massively engraft in ovine myocardium. Thus, avoiding the cell culture expansion phase is feasible and could become a promising option for cellular cardiomyoplasty.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3