Affiliation:
1. From the Nemours Cardiac Center, duPont Hospital for Children, Thomas Jefferson University, Wilmington, Del (K.O.M., C.P., S.S.G., W.I.N., J.D.M.), and the Polish-American Children’s Hospital, Medicum Jagiellonian, Krakòw, Poland (K.J., E.M.).
Abstract
Background—
The balance of systemic, pulmonary, and coronary blood flow after the Norwood operation for hypoplastic left heart syndrome (HLHS) is critical to early survival. We hypothesized that a right ventricle to pulmonary artery conduit (instead of a systemic to pulmonary artery shunt) would result in hemodynamic changes consistent with a more stable balance of systemic, pulmonary, and coronary perfusion.
Methods and Results—
Hemodynamic data were obtained during cardiac catheterization before the hemi-Fontan procedure from 24 patients with HLHS; the first 10 had a Norwood operation with a systemic to pulmonary artery shunt, and the latter 14 had the Norwood operation with a right ventricle to pulmonary artery conduit. Significant differences were present, with the right ventricle to pulmonary artery conduit group having a higher aortic diastolic pressure (55 versus 42 mm Hg), a narrowed systemic pulse pressure (43 versus 64 mm Hg), a lower Qp:Qs (0.92 versus 1.42), a higher coronary perfusion pressure (46 versus 32 mm Hg), and a higher ratio of pulmonary artery diameter to descending aorta diameter (1.51 versus 1.37).
Conclusions—
We conclude that, in HLHS after the Norwood operation, the right ventricle to pulmonary artery conduit modification produces hemodynamic changes consistent with improved coronary perfusion and a more favorable distribution of systemic, pulmonary, and coronary blood flow.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine