Deficiency of Gelatinase A Suppresses Smooth Muscle Cell Invasion and Development of Experimental Intimal Hyperplasia

Author:

Kuzuya Masafumi1,Kanda Shigeru1,Sasaki Takeshi1,Tamaya-Mori Norika1,Cheng Xian Wu1,Itoh Takeshi1,Itohara Shigeyoshi1,Iguchi Akihisa1

Affiliation:

1. From the Department of Geriatrics, Nagoya University Graduate School of Medicine (M.K., S.K., T.S., N.T.-M., X.W.C., T.I., A.I.), Discovery Research Laboratories, Shionogi and Co, Ltd (T.I.), Toyonaka, Osaka, and RIKEN Brain Science Institute (S.I.), Wako, Saitama, Japan.

Abstract

Background— Although it has been demonstrated that matrix metalloproteinases (MMPs) play an important role in the arterial remodeling in atherosclerosis and restenosis, it is not clear which MMP is involved in which process. To define the role of MMP-2 in arterial remodeling, we evaluated the influence of the targeted deletion of the MMP-2 gene on vascular remodeling after flow cessation in the murine carotid arteries. Methods and Results— The left common carotid arteries of wild-type and MMP-2–deficient mice were ligated just proximal to their bifurcations, and the animals were then processed for morphological and biochemical studies at specific time points. MMP-2 activity and mRNA levels increased in ligated carotid arteries of wild-type mice on the basis of observation by gelatin zymography and quantitative real-time RT-PCR. There was significantly less intimal hyperplasia in MMP-2–deficient mice at 2 and 4 weeks after ligation than there in wild-type mice. Arterial explants from the aorta of MMP-2–deficient mice showed that smooth muscle cell (SMC) migration was inhibited in comparison with wild-type mice. The chemoattractant-directed invasion through a reconstituted basement membrane barrier was significantly reduced in cultured SMCs derived from MMP-2–deficient mice, although no difference was observed in SMC migration across the filter or in proliferative response between the control and MMP-2–deficient mice. Conclusions— In a mouse carotid artery blood flow cessation model, MMP-2 contributes to intimal hyperplasia mainly through the SMC migration from the media into the intima by degrading and breaching the extracellular matrix proteins surrounding each cell and the internal elastic lamina.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3