Obtaining of WC–Co- and WC–TiC–Co-Based Ultradispersive Alloys Modified with B<sub>4</sub>C–TiB<sub>2</sub> Quasieutetic

Author:

Tsagareishvili Otar,Mikeladze Archil,Chedia Roin,Batsikadze Tamaz,Chkhartishvili Levan

Abstract

Tungsten carbide WC-based materials characterized by high hardness and wear resistance have long been widely used in manufacturing cutting and mining tools. They are alloyed or modified with different ceramic phases to improve operational characteristics further. There are obtained the hard tungsten carbide–cobalt WC–Co and tungsten carbide–titanium carbide–cobalt WC–TiC–Co metal-ceramic alloys ultradispersed powders modified with quasieutectic ceramic alloy B<sub>4</sub>C–30wt.%TiB<sub>2</sub> and complex samples compacted from them. The quasieutectic alloy used as a modifier has almost as high hardness as pure boron carbide. Still, it is characterized by higher electrical and thermal conductivities of several orders of magnitude. Two groups of hard alloys modified with B<sub>4</sub>C–30wt.%TiB<sub>2</sub> were studied: ВK8 grade WC–Co and T30K4 and T15K6 grades WC–TiC–Co. Metal-ceramic composite powders of different concentrations are obtained by chemical synthesis and mechanical dispersion in an attritor. The particle size of chemically synthesized composite powders is ≤0.3 μm, and those obtained by mechanical dispersion are ≤0.8 μm. SPS (Spark-Plasma Sintering) and HTS (High-Temperature Sintering) methods compact these powder materials. Phase composition of the obtained materials, distribution of chemical elements in them, and structural features are investigated by the XRD (X-Ray Diffraction) method and EDX (Energy Dispersive (micro)X-ray) spectrometry and optical and electron microscopies, respectively. Key physical-mechanical characteristics of the received samples, such as hardness, microhardness, and bending strength, are studied. Ultradispersed (≤0.8 μm) metal-ceramic alloys of the WC–Co–B<sub>4</sub>C–TiB<sub>2</sub> system with interesting characteristics have been obtained using the WC–Co hard alloy of BK8 grade as the matrix. A SPS-compacted sample's hardness, microhardness, and bending strength are 93.0 HRA, 3350 kgf/mm<sup>2</sup>, and 100 kgf/mm<sup>2</sup>, respectively. Among the WC–TiC–Co system materials, the Т15K6 grade-based hard alloy modified with 15wt.%(B<sub>4</sub>C–30wt.%TiB<sub>2</sub>) has the best characteristics with hardness, microhardness, and bending strength of 91.5 HRA, 2900, and 117 kgf/mm<sup>2</sup>, respectively. A preliminary study of the problem of environmentally safe utilization of tungsten-containing scrap and tungsten waste is also carried out as part of the work. In particular, the tungsten heater waste is treated in hydrogen peroxide, and by adding specific liquid components to the tungsten-containing proper solution in a single utilization–synthesis cycle, the target product – ultradispersed WC–Co hard alloy is obtained.

Publisher

LIDSEN Publishing Inc

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3