Deep Learning based Cell Classification in Imaging Flow Cytometer

Author:

Gu Yi1ORCID,Chen Aiguo1ORCID,Zhang Xin1ORCID,Fan Chao1ORCID,Li Kang1ORCID,Shen Jinsong2ORCID

Affiliation:

1. School of Artificial Intelligence and Computer Science, Jiangnan University, 214122, China

2. Jiangsu Saideli Diagnostic Technology Co., Ltd, Jingjiang, Jiangsu 214500, China;Jiangsu Saideli Pharmaceutical Machinery Manufacturing Co., Ltd, Jingjiang, Jiangsu 214500, China

Abstract

Deep learning is an idea technique for image classification. Imaging flow cytometer enables high throughput cell image acquisition and some have integrated with real-time cell sorting. The combination of deep learning and imaging flow cytometer has changed the landscape of high throughput cell analysis research. In this review, we focus on deep learning technologies applied in imaging flow cytometer for cell classification and real-time cell sorting. This article describes some recent research, challenges and future trend in this area.

Publisher

Advancing Science Press Limited

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Imaging Flow Cytometry: Development, Present Applications, and Future Challenges;Methods and Protocols;2024-03-23

2. Advancing precision single-cell analysis of red blood cells through semi-supervised deep learning using database of patients with post-COVID-19 syndrome;Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XXII;2024-03-12

3. Intrapulse Recognition of Radar Signals Via Bicubic Interpolation WVD;IEEE Transactions on Aerospace and Electronic Systems;2023-12

4. Application of Image Recognition Algorithms Based on Deep Learning in the Field of Communication Science;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

5. Deep Learning models for retinal cell classification;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3