Effect of magnesium on monohydrocalcite formation and unit-cell parameters

Author:

Vereshchagin Oleg S.1ORCID,Frank-Kamenetskaya Olga V.1,Kuz’mina Maria A.1,Chernyshova Irina A.1,Shilovskikh Vladimir V.23ORCID

Affiliation:

1. Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia

2. Geomodel Centre, St. Petersburg State University, Uliyanovskaya St. 1, 198504, St. Petersburg, Russia

3. Institute of Mineralogy, Urals Branch of the Russian Academy of Sciences, Miass 456317, Russia

Abstract

Abstract Monohydrocalcite (MHC) is hydrated calcium carbonate, which plays an active role in many geological processes, carbonate biomineralization, and can be used for fundamental science (as a paleoenvironmental indicator) and industry (for removal of hazardous anions). Despite a great number of works, the conditions preferable for MHC formation/stabilization and MHC crystal chemical patterns in relation to Mg and H2O are not clarified yet. In the course of current work, we conducted 38 syntheses to obtain information on MHC formation at different Mg/Ca ratios (0–12), pH (~9–12), and temperature (23 and 3 °C). Newly formed carbonate precipitates were studied by means of X-ray powder diffraction, optical, and scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman, and Fourier-transform infrared (FTIR) spectroscopies. The phase diagram for MHC, calcite, aragonite, and dypingite as a function of pH and Mg concentration in solution at T = 23 °C and Ca/CO3 = 0.5 was obtained. We demonstrated that MHC could be stable in dry conditions for up to two years and that the time of crystallization is important for the transformation of amorphous calcium carbonate to MHC. Our results on synthetic MHC stability show that the widespread idea that MHC is a short-lived intermediate phase is wrong. For the first time, on the basis of a regular changes in the unit-cell parameters the possibility of significant incorporation of magnesium in MHC has been demonstrated. According to FTIR data, it is shown to be accompanied by an increase in the water content, which leads to multidirectional change in a and c MHC parameters.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3