Ab initio study of structural, elastic and thermodynamic properties of Fe3S at high pressure: Implications for planetary cores

Author:

Valencia Karen1,De Moya Aldemar12,Morard Guillaume34,Allan Neil L.5,Pinilla Carlos15ORCID

Affiliation:

1. Departamento de Física y Geociencias, Universidad del Norte, Km 5 Via Puerto Colombia, Barranquilla, Colombia

2. Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Calle 58 No. 55-66, Barranquilla, Colombia

3. Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, IRD, Muséum National d’Histoire Naturelle, Paris, France

4. Université Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble

5. School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.

Abstract

Abstract Using density functional theory electronic structure calculations, the equation of state, thermodynamic and elastic properties, and sound wave velocities of Fe3S at pressures up to 250 GPa have been determined. Fe3S is found to be ferromagnetic at ambient conditions but becomes non-magnetic at pressures above 50 GPa. This magnetic transition changes the c/a ratio leading to more isotropic compressibility, and discontinuities in elastic constants and isotropic sound velocities. Thermal expansion, heat capacity, and Grüneisen parameters are calculated at high pressures and elevated temperatures using the quasiharmonic approximation. We estimate Fe-Fe and Fe-S force constants, which vary with Fe environment, as well as the 56Fe/54Fe equilibrium reduced partition function in Fe3S and compare these results with recently reported experimental values. Finally, our calculations under the conditions of the Earth’s inner core allow us to estimate a S content of 2.7 wt% S, assuming the only components of the inner core are Fe and Fe3S, a linear variation of elastic properties between end-members Fe and Fe3S, and that Fe3S is kinetically stable. Possible consequences for the core-mantle boundary of Mars are also discussed.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3