Crystal chemistry of schreibersite, (Fe,Ni)3P

Author:

Britvin Sergey N.12,Krzhizhanovskaya Maria G.1,Zolotarev Andrey A.1,Gorelova Liudmila A.1,Obolonskaya Edita V.3,Vlasenko Natalia S.4,Shilovskikh Vladimir V.45ORCID,Murashko Mikhail N.1

Affiliation:

1. Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia

2. Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia

3. The Mining Museum, Saint Petersburg Mining University, 2, 21st Line 199106 St. Petersburg, Russia

4. Centre for Geo-Environmental Research and Modelling, St. Petersburg State University, Ulyanovskaya ul. 1, 198504 St. Petersburg, Russia

5. Institute of Mineralogy, Urals Branch of Russian Academy of Science, Miass 456317, Russia

Abstract

Abstract Schreibersite, (Fe,Ni)3P, the most abundant cosmic phosphide, is a principal carrier of phosphorus in the natural Fe-Ni-P system and a likely precursor for prebiotic organophosphorus compounds at the early stages of Earth’s evolution. The crystal structure of the mineral contains three metal sites allowing for unrestricted substitution of Fe for Ni. The distribution of these elements across the structure could serve as a tracer of crystallization conditions of schreibersite and its parent celestial bodies. However, discrimination between Fe (Z = 26) and Ni (Z = 28) based on the conventional X-ray structural analysis was for a long time hampered due to the proximity of their atomic scattering factors. We herein show that this problem has been overcome with the implementation of area detectors in the practice of X-ray diffraction. We report on previously unknown site-specific substitution trends in schreibersite structure. The composition of the studied mineral encompasses a Ni content ranging between 0.03 and 1.54 Ni atoms per formula unit (apfu): the entire Fe-dominant side of the join Fe3P-Ni3P. Of 23 schreibersite crystals studied, 22 comprise magmatic and non-magmatic iron meteorites and main group pallasites. The near end-member mineral (0.03 Ni apfu) comes from the pyrometamorphic rocks of the Hatrurim Basin, Negev desert, Israel. It was found that Fe/Ni substitution in schreibersite follows the same trends in all studied meteorites. The dependencies are nonlinear and can be described by second-order polynomials. However, the substitution over the M2 and M3 sites within the most common range of compositions (0.6 < Ni <1.5 apfu) is well approximated by a linear regression: Ni(M2) = 0.84 × Ni(M3) – 0.30 apfu (standard error 0.04 Ni apfu). The analysis of the obtained results shows a strong divergence between the variation of unit-cell parameters of natural schreibersite and those of synthetic (Fe,Ni)3P. This indicates that Fe/Ni substitution trends in the mineral and its synthetic surrogates are different. A plausible explanation might be related to the differences in the system equilibration time of meteoritic schreibersite (millions of years) and synthetic (Fe,Ni)3P (~100 days). However, regardless of the reason for the observed difference, synthetic (Fe,Ni)3P cannot be considered a structural analog of natural schreibersite, and this has to be taken into account when using synthetic (Fe,Ni)3P as an imitator of schreibersite in reconstructions of natural processes.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3