Mixing of cogenetic magmas in the Cretaceous Zhangzhou calc-alkaline granite from southeast China recorded by in-situ apatite geochemistry

Author:

Zhang Xiaobing12ORCID,Guo Feng1ORCID,Zhang Bo12,Zhao Liang1,Wang Guoqing12

Affiliation:

1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract Mixing of cogenetic magmas represents an important process in granite petrogenesis but is difficult to identify and is consequently often overlooked due to the absence of obvious isotopic distinctions between the mixed melts. We have conducted in situ elemental and O isotope analyses on apatite from Cretaceous Zhangzhou calc-alkaline granite in southeast China. We integrated these data with micro-analyses on other minerals (plagioclase, zircon, and titanite) as well as whole-rock geochemistry to decipher the mixing history of this granitic complex. The apatite occurs as an early crystallizing phase forming inclusions in biotite, plagioclase, and titanite, and is characterized by core-rim zonation textures with a dark core and bright rims in backscattered images. The core domains have remarkably higher SO3 and Li concentrations but much lower SiO2, REE, and Y concentrations than the rim domains. However, both the cores and rims show geochemical compositions similar to that from typical I-type granite and also have mantle-like O isotope compositions (the core has δ18O = 5.3–6.8‰ and the rim has δ18O = 5.2–6.4‰, respectively), indicating crystallization from granitic melts derived from newly accreted crust. The combined major and trace element and O isotope compositions of apatite and whole-rock geochemistry suggest that compositional evolution of the Zhangzhou granite involved mixing between two cogenetic magma batches, with variable degrees of subsequent differentiation. Batch I magma was a low-SiO2 and high-SO3 melt, whereas Batch II magma was a high-SiO2 and low-SO3 melt that experienced devolatilization. The high-S content in apatite cores further suggests the parental magma of the Zhangzhou granite likely originated from a sulfur-rich source comprising mainly newly accreted arc crust in response to subduction of the paleo-Pacific Ocean. The geochemical records of these magmatic processes are rarely observed in coeval zircon, titanite, and plagioclase. Our study, therefore, demonstrates that apatite geochemistry is potentially a more suitable monitor of complex magmatic evolution, including devolatilization and mixing of isotopically indistinguishable magmas.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3