Behavior and origin of hydrogen defects in natural orthopyroxene during high-temperature processes

Author:

Yang Yan1,Ingrin Jannick12,Liu Wendi1,Huang Weihua1,Gu Xiaoyan1,Xia Qunke1ORCID

Affiliation:

1. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

2. CNRS, INRAE, ENSCL, UMR 8207, UMET, Unité Matériaux et Transformations, University of Lille, F 59000 Lille, France

Abstract

Abstract Spectral features of hydrogen defects in natural mantle minerals derive from physico-chemical conditions of the lithosphere. Although hydrogen defects in synthetic orthopyroxene have been well investigated, their complex spectral features in natural orthopyroxenes are still difficult to decipher. To clarify this issue, it is indispensable to reveal what happens to hydrogen defects during high-temperature processes, thereby fingerprinting the origins of hydrogen defects observed in natural orthopyroxene. Here, we carry out Fourier transform infrared spectroscopic studies on hydrogen defects of three natural orthopyroxenes at elevated temperatures to 1000 °C. Hydrogen defects display reversible disordering at temperatures above 700 °C, which is different from those at ambient conditions. Moreover, hydrogen diffusivities are significantly different between the orthopyroxene samples from different tectonic settings despite their similar iron contents. Even for the same crystal, different hydrogen defects display different diffusion behaviors. Hydrogen defects corresponding to the 3420 cm−1 band have the fastest diffusivity relative to the other hydrogen defects. Most importantly, hydrogen defects can redistribute in the crystal, with new hydrogen defects produced at the cost of the initial hydrogen defects rather than involving a reaction with an external hydrogen source. Combining these findings with previously reported hydrogen defects in natural olivine and clinopyroxene at high temperatures, we propose that: (1) to correctly relate hydrogen defects features to geological processes, it is imperative to understand their behavior and origin, and (2) hydrogen disordering should be taken into account when predicting and extrapolating data on physical properties of the mantle from room-temperature measurements.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3