Formation of metallic-Cu-bearing mineral assemblages in type-3 ordinary and CO chondrites

Author:

Li Ye1234,Rubin Alan E.45,Hsu Weibiao12ORCID

Affiliation:

1. CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China

2. CAS Center for Excellence in Comparative Planetology, Hefei 230026, China

3. The State Key Laboratory of Planetary Science, Macau University of Science and Technology, Macau

4. Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, California 90095-1567, U.S.A.

5. Maine Mineral and Gem Museum, 99 Main Street, P.O. Box 500, Bethel, Maine 04217, U.S.A.

Abstract

Abstract Studies of the new growth and re-distribution of Cu-rich phases in chondrites of different petrologic subtypes can potentially provide insights into post-accretionary parent-body processes. We present a systematic study of the distribution of Cu-rich phases and metallic Cu in Ornans-like carbonaceous chondrites (CO3) that underwent little aqueous alteration or shock (most with shock stages of S1) but exhibit a range of thermal metamorphism (subtype 3.0–3.7). A comparison to ordinary chondrites (OCs), which have undergone a larger range of shock levels, allows us to constrain the relative roles of radiogenic and shock heating in the origin of Cu distribution in chondrites. We found that the Cu content of Ni-rich metal and calculated bulk Cu content of CO3 chondrites (based on mass-balance calculations) show an increase from CO3.0 to CO3.2 chondrites. We speculate that some unidentified phases in the matrix account for a significant portion (nearly ~100 ppm) of the Cu budget in bulk samples of CO3.0 chondrites, while Ni-rich metal is the main Cu-carrier for CO3.2–3.7 chondrites. Within CO3.2–3.7 chondrites, Cu and Ni contents of Ni-rich metal are positively correlated, showing a systematic decrease from lower to higher subtype (~0.41 wt% Cu and ~45.0 wt% Ni in CO3.2 Kainsaz; ~0.28 wt% Cu and ~38.8 wt% Ni in CO3.7 Isna). Metallic Cu grains were found in every sample of CO3.2–3.7 chondrites, but not in any CO3.0–3.1 chondrites. Metallic Cu is: (1) present at metallic-Fe-Ni-pyrrhotite interfaces; (2) associated with fine irregular pyrrhotite grains in Ni-rich-metal-pyrrhotite nodules; (3) associated with fizzed pyrrhotite (fine-grained mixtures of irregularly shaped metal grains surrounded by pyrrhotite); (4) present at the edges of metallic Fe-Ni grains; and (5) present as isolated grains. In some metallic-Cu-bearing mineral assemblages, pyrrhotite has higher Cu concentrations than adjacent Ni-rich metal and shows a drop in Cu concentration at the interface between metallic Cu and Cu-rich pyrrhotite. This implies that the precipitation of metallic Cu grains could be related to the local Cu enrichment of pyrrhotite. We consider that radiogenic heating is mainly responsible for the formation of opaque phases in CO chondrites based on the relatively slow metallographic cooling rate (~0.1–5 °C/Ma), the increasing uniformity of Ni contents in Ni-rich metal with increasing CO subtype (44.3 ± 17.3 wt% in CO3.00 to 38.8 ± 3.4 wt% in CO3.7 chondrite), and the relatively narrow range of pyrrhotite metal/sulfur ratios (~0.976–0.999). Metal/sulfur ratios of pyrrhotite grains in most CO3.2–3.7 chondrites (mean = ~0.986–0.997; except Lancé) are slightly higher than those in CO3.0–3.1 chondrites (mean = ~0.981–0.987; except Y-81020), possibly indicative of a release and re-mobilization of sulfur during progressive heating as previously reported for type-3 chondrites. In this regard, we suggest most metallic Cu grains in CO3 chondrites may have precipitated from Cu-rich pyrrhotite due to sulfidation of Fe-Ni metal during parent-body thermal metamorphism. Locally, a few metallic Cu grains associated with fizzed pyrrhotite could have formed during transient shock-heating. Both thermal and shock metamorphism could be responsible for the formation of metallic Cu. Although the systematic decrease in the Ni contents of Ni-rich metal from subtype-3.2 to subtype-3.8 also occurs in OCs, the average Cu contents of Ni-rich metal grains are indistinguishable among type-3 OCs of different subtypes. The paucity of metallic Cu in weakly shocked type-3 OCs could be related to: (1) the relatively low-bulk Cu contents of OCs, and/or (2) the relatively rapid metallographic cooling rates at <500–600 °C (~1–10 °C/Ma for LL chondrites), possibly resulting from early disturbance of OC parent bodies. The intergrowth of metallic Cu and irregular pyrrhotite more commonly occurs in shocked type-4 to type-6 OCs than in CO3 chondrites. This could be due to S in type-4 to type-6 OCs being more mobilized due to shock heating than in unshocked CO3 chondrites. We predict that some other groups of carbonaceous chondrites (e.g., CI and CM) are less likely to produce metallic Cu due to the: (1) relatively low amount of metallic Fe-Ni; (2) relatively low parent-body temperatures of ~100–300 °C; (3) high mobility of Cu in solution for aqueously altered samples; and (4) the short heating duration for metamorphosed samples.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lifetime of the Outer Solar System Nebula From Carbonaceous Chondrites;Journal of Geophysical Research: Planets;2022-06-29

2. Progress of Planetary Science in China;Chinese Journal of Space Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3