Zircon geochronological and geochemical insights into pluton building and volcanic-hypabyssal-plutonic connections: Oki-Dōzen, Sea of Japan—A complex intraplate alkaline volcano

Author:

Scarrow Jane H.12,Chamberlain Katy J.3,Montero Pilar1,Horstwood Matthew S.A.4,Kimura Jun-Ichi5,Tamura Yoshihiko5,Chang Qing5,Barclay Jenni2

Affiliation:

1. Department of Mineralogy and Petrology, University of Granada, Campus Fuentenueva, Granada 18002, Spain

2. School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K.

3. Environmental Sustainability Research Centre, University of Derby, Derby, DE22 1GB, U.K.

4. British Geological Survey, Keyworth, Nottingham, NG12 5GG, U.K.

5. Japan Agency for Marine-Earth Science and Technology, 12-15, Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan

Abstract

Abstract The relationship between plutonic and volcanic components of magmatic plumbing systems continues to be a question of intense debate. The Oki-Dōzen Islands, Sea of Japan, preserve outcrops of temporally associated plutonic, hypabyssal, and volcanic rocks. Post-intrusion uplift juxtaposed Miocene syenites in inferred faulted contact with volcanic trachytes that are cut by rhyolite hypabyssal dikes. This provides a window deep into the timing and origins of magma storage architecture and dynamics. Zircon is ubiquitous in all samples; our aim is to determine what its age and composition can reveal about the plutonic-volcanic connection. Here we show magma source characteristics are recorded in zircon Hf isotopes; source composition and assimilation of heterogeneous hydrothermally altered crust in zircon O isotopes; and extensive fractional crystallization in zircon trace elements. Combined with new UTh-Pb SHRIMP zircon ages, 6.4–5.7 Ma, compositional data show pluton formation was by protracted amalgamation of discrete magma pulses. The rhyolite dike preserves an evolved fraction segregated from these discrete magmas. Synchronous with plutonism was a volcanic eruption of trachyte magma derived from the same source, which may have stalled at a relatively shallow depth prior to eruption. Stalling occurred at least above the amphibole stability zone because amphibole-compatible Sc and Ti were not depleted in the trachyte melt resulting in elevated values of these in volcanic compared to plutonic zircon. Identifying smaller episodic magma pulses in a larger magmatic complex places constraints on potential magma fluxes and eruptible volumes. High-flux, large volume, plume-related ocean island magmatic systems may have extensive vertically distributed multi-stage magmatic reservoirs and subduction-related systems transcrustal magma reservoirs. By contrast, Oki-Dōzen was a low-flux system with incremental pluton growth and small- to moderate-scale eruptions.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3