Hydroxylpyromorphite, a mineral important to lead remediation: Modern description and characterization

Author:

Olds Travis A.1ORCID,Kampf Anthony R.2ORCID,Rakovan John F.3,Burns Peter C.45ORCID,Mills Owen P.6,Laughlin-Yurs Cullen7

Affiliation:

1. Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, U.S.A.

2. Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.

3. Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, U.S.A.

4. Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.

5. Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.

6. Applied Chemical and Morphological Analysis Laboratory, Michigan Technological University, Houghton, Michigan 49931, U.S.A.

7. 513 Iron Street, Norway, Michigan 49870, U.S.A.

Abstract

Abstract Hydroxylpyromorphite, Pb5(PO4)3(OH), has been documented in the literature as a synthetic and naturally occurring phase for some time but has not previously been formally described as a mineral. It is fully described here for the first time using crystals collected underground in the Copps mine, Gogebic County, Michigan. Hydroxylpyromorphite occurs as aggregates of randomly oriented hexagonal prisms, primarily between about 20–35 μm in length and 6–10 μm in diameter. The mineral is colorless and translucent with vitreous luster and white streak. The Mohs hardness is ~3½–4; the tenacity is brittle, the fracture is irregular, and indistinct cleavage was observed on {001}. Electron microprobe analyses provided the empirical formula Pb4.97(PO4)3(OH0.69F0.33Cl0.06)Σ1.08. The calculated density using the measured composition is 7.32 g/cm3. Powder X-ray diffraction data for the type material is compared to data previously reported for hydroxylpyromorphite from the talc mine at Rabenwald, Austria, and from Whytes Cleuch, Wanlockhead, Scotland. Hydroxylpyromorphite is hexagonal, P63/m, at 100 K, a = 9.7872(14), c = 7.3070(10) Å, V = 606.16(19) Å3, and Z = 2. The structure [R1 = 0.0181 for 494 F>4σ(F) reflections] reveals that hydroxylpyromorphite adopts a column anion arrangement distinct from other members of the apatite supergroup due to the presence of fluorine and steric constraints imposed by stereoactive lone-pair electrons of Pb2+ cations. The F– anion sites are displaced slightly from hydroxyl oxygen anions, which allows for stronger hydrogen-bonding interactions that may in turn stabilize the observed column-anion arrangement and overall structure. Our modern characterization of hydroxylpyromorphite provides deeper understanding to a mineral useful for remediation of lead-contaminated water.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3